Skip to main content

Interspecies Scaling in Pharmacokinetics

  • Chapter

Part of the book series: NATO ASI Series ((NSSA,volume 221))

Abstract

Scaling is the process of utilizing structural and functional features of one system as a basis to predict those of another. “Interspecies scaling in pharmacokinetics” signifies the prediction of in vivo chemical disposition behavior in untested species from the experimental observations made in one or more species. Interspecies scaling of the pharmacokinetic processes (i.e., uptake, distribution and clearance) of chemicals can be performed by (1) allometry and (2) physiological modeling. Whereas the allometric approach involves estimation of the pharmacokinetic parameters — clearance, half-life, volume of distribution etc. — in untested species based on their relationship to body mass in several test animal species, physiological modeling involves computer simulation of pharmacokinetics first, in one species, and then extrapolation to other species by scaling the appropriate critical biological determinants of disposition (e.g., blood flow rates, tissue volumes, rates of metabolism).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adolph, E. F., 1949. Quantitative relations in the physiological constitutions of mammals. Nature 109: 579.

    CAS  Google Scholar 

  • Andersen, M.E. Clewell, H.J.III., Gargas, M.L., Smith, F.A. and Reitz, R.H., 1987. Physiologically based pharmacokinetics and the risk assessment process for methylene chloride. Toxicol. Appl. Pharmacol. 87: 185.

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum, H., 1980. Interspecies variation in liver weight, blood flow and antipyrine intrinsic clearance: Extrapolation of data to benzodiazepines and phenytoin. J Pharmacokin Biopharm 8: 165.

    Article  CAS  Google Scholar 

  • Boxenbaum, H., 1982. Interspecies scaling, allometry, physiological time, and the ground plan for pharmacokinetics. J. Pharmacokinet. Biopharm. 10: 201.

    Article  PubMed  CAS  Google Scholar 

  • Boxenbaum, H., 1984. Interspecies pharmacokinetic scaling and the evolutionary-comparitive paradigm. Drug Metab. Rev. 15: 1071.

    CAS  Google Scholar 

  • Boxenbaum, H. and D Souza, R., 1987. Physiological models, allometry, neoteny, space-time and pharmacokinetics. In: Pharmacokinetics: Mathematical and statistical approaches to metabolism and distribution of chemical and drugs ( A. Pecile and A. Rescigno, editors), page 191. Plenum Press, New York.

    Google Scholar 

  • Boxenbaum, H. and Ronfield, R., 1983. Interspecies pharmacokinetic scaling and the Dedrick plots. Am. J. Physiol. 245: R768.

    PubMed  CAS  Google Scholar 

  • Campbell, D.B. and Ings R.M.J., 1988. New approaches to the use of pharmacokinetics in toxicology and drug development. Human Toxicol. 7: 469.

    Article  CAS  Google Scholar 

  • Dedrick, R.L., Bischoff, K.B. and Zaharko, D.Z., 1970. Interspecies correlation of plasma concentration history of methotrexate (NS C-740). Cancer Chemother. Rep. (Part 1 ) 54: 95.

    Google Scholar 

  • Fisher, J•W., Whittaker, T.A., Taylor, D.H., Clewell, JH.J.III. and Andersen, M.E., 1990. Physiologically based pharmacokinetic modeling of the pregnant rat: a multiroute exposure model for trichloroethylene and trichloroacetic acid. Toxicol. Appl. Pharmacol. 99: 395.

    Article  Google Scholar 

  • Gehring, P.J., Watanabe, P.G. and Blau, G.E., 1976. Pharmacokinetic studies in evaluation of the toxicological and environmental hazard of chemicals. In: New concepts in safety evaluation ( M.A. Mehlman, R.E. Shapiro and H. Blumenthal, eds.), page 193. Hemisphere, New York.

    Google Scholar 

  • Gould, S.J., 1977. Neoteny and phylogeny. The Belknap press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Hall, S. and Rowland, M., 1983. Relationship between renal clearance, protein binding, and urine flow for digitoxin, a compound of low clearance in isolated perfused rat kidney. J. Pharmacol. Exp. Ther. 227: 174.

    Google Scholar 

  • Holt, J.P. and Rhode E.A., 1976. Similarity of renal glomerular hemodynamics in mammals. Am. Heart J. 92: 465.

    Article  PubMed  CAS  Google Scholar 

  • Ings, R.M.J., 1990. Interspecies scaling and comparisons in drug development and toxicokinetics. Xenobiotica 20: 1201.

    Article  PubMed  CAS  Google Scholar 

  • Kleiber, M., 1947. Metabolic turnover rate: a physiological meaning of the metabolic rate per unit body weight. J. Theor. Biol. 53: 199.

    Article  Google Scholar 

  • Krishnan, K. and Andersen, M.E., 1991. Pharmacokinetics, individual differences. In: Handbook of Hazardous Materials (M.Corn, ed.). Academic Press, New York (in press).

    Google Scholar 

  • Krishnan, K., Gargas, M.L., Fennell, T.R. and Andersen, M.E., 1991. A physiologically based description of ethylene oxide dosimetry in the rat. Toxicologist 11: 33.

    Google Scholar 

  • Leung, H.W., Paustenbach, D.J., Murray, F.J. and Andersen, M.E., 1990. A physiologically based pharmacokinetic description and enzyme inducing properties of 2,3,7,8-tetrachlorodibenzo-p-dioxin in the rat. Toxicol. Appl. Pharmacol. 103: 399.

    Article  PubMed  CAS  Google Scholar 

  • Levy, G., 1968. Dose dependent effects in pharmacokinetics. In: Importance of fundamental principles in drug evaluation ( D.H. Tedeschi and R.E. Tedeschi, eds.), page 141. Raven, New York.

    Google Scholar 

  • Levy, G., 1980. Effect of plasma protein binding on renal clearance of drugs. J. Pharmaceut. Sci. 69: 482.

    Article  CAS  Google Scholar 

  • McDougal, J.N., Jepson, G.W., Clewell, H.J.III., McNaughton, M.G. and Andersen, M.E., 1986. A physiological pharmacokinetic model for dermal absorption of vapors in the rat. Toxicol. Appl. Pharmacol. 85: 286.

    Article  PubMed  CAS  Google Scholar 

  • Medinsky, M., 1990. Critical determinants in the systemic availability and dosimetry of volatile organic chemicals. In: Principles of route-to-route extrapolation for risk assessment (T. R. Gerrity and C.J. Henry, eds.). Elsevier, New York (in press).

    Google Scholar 

  • Mordenti, J., 1986. Man versus beast: Pharmacokinetic scaling in mammals. J. Pharmaceut. Sci. 75: 1028.

    Article  CAS  Google Scholar 

  • Mordenti, J. and Chappell, W., 1989. The use of interspecies scaling in toxicoldnetics. In: Toxicokinetics and new drug development ( A. Yacobi, JP Skelly and VK Batra, eds.), page 42. Pergamon Press, New York.

    Google Scholar 

  • National Research Council, 1986. Drinking water and health, volume 6. NAS, Washington, D.C.

    Google Scholar 

  • Ramsey, J.C. and Andersen, M.E., 1984. A physiologically based description of the inhalation pharmacokinetics of styrene in rats and humans. Toxicol. Appl. Pharmacol. 73: 159.

    Article  PubMed  CAS  Google Scholar 

  • Reitz, R.H., Mendrela, A.L., Park, C.N., Andersen, M.E. and Guengerich, F.P., 1988. Incorporation of in vitro enzyme data into physiologically based pharmacokinetic model for methylene chloride: implications for risk assessment. Toxicol. Lett. 43: 97.

    Article  PubMed  CAS  Google Scholar 

  • Rowland, M., 1986. Physiological pharmacokinetic models and interanimal species scaling. Pharmacol. Ther. 29: 49.

    Article  Google Scholar 

  • Sacher, G.A., 1959. Relationship of lifespan to brain weight and body weight in mammals. Ciba Foundation Colloquim on Aging 5: 115.

    Google Scholar 

  • Stahl, W.R., 1963. The analysis of biological similarity. Adv. Biol. Med. Phys. 9: 355.

    PubMed  CAS  Google Scholar 

  • Tangliu, D.D., Tozer, T.N. and Riegelman, S., 1983. Dependence of renal clearance on urine flow: a mathematical model and its application. J. Pharmaceut. Sci. 72: 154.

    Article  CAS  Google Scholar 

  • van Ginneken, C.A.M. and Russel, F.G.M., 1989. Saturable phannacokinetics in the renal excretion of drugs. Clin. Pharmacokinet. 16: 38.

    Article  PubMed  Google Scholar 

  • Wesson, L.G., 1954. A theoretical analysis of urea excretion by the mammalian lcidney. Am. J. Physiol. 179: 364.

    PubMed  CAS  Google Scholar 

  • Wilkinson, G.R. and Shand, D.G., 1975. A physiological approach to hepatic drug clearance. Clin. Pharmacol. Ther. 18: 377.

    PubMed  CAS  Google Scholar 

  • Yates, E. and Kugler, P.N., 1986. Similarity principles and intrinsic geometries: contrasting approaches to interspecies scaling. J. Pharmaceut. Sci. 75: 1019.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Krishnan, K., Andersen, M.E. (1991). Interspecies Scaling in Pharmacokinetics. In: Rescigno, A., Thakur, A.K. (eds) New Trends in Pharmacokinetics. NATO ASI Series, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8053-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8053-5_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8055-9

  • Online ISBN: 978-1-4684-8053-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics