Skip to main content

C-6 Glioma Cells of Early Passage Have Progenitor Properties in Culture

  • Chapter
Plasticity and Regeneration of the Nervous System

Abstract

Although considerable progress has been made in the last decade in our understanding of the role of glial cells in neuronal development and function, the factors which regulate glia cell growth and function are only recently being investigated (see refs in review Vernadakis, 1988). C-6 glioma cells have provided a useful model to study glial cell properties, glial factors and sensitivity of glial cells to various substances and conditions. In an early study, we reported (Parker et al, 1980) that C-6 glioma cells, 2B clone, exhibited differential enzyme expression with cell passage: the activity of cyclic nucleotide phosphohydrolase (CNP) an enzyme marker for oligodendrocytes (Poduslo and Norton, 1972; Poduslo, 1975) was markedly high and that of glutamine synthetase (GS), an enzyme marker for astrocytes (Martinez-Hernandez et al, 1977; Norenberg and Martinez-Hernandez, 1979) was low in early passages (up to passage 26) and this relationship was reversed in the late passages (beyond passage 70)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aizenman, Y., Weischel, M.E. and De Vellis, J., 1986. Changes in insulin and transferrin requirements of pure brain neuronal cultures during embryonic development. Proc. Nat. Acad. Sci., USA. 83:2263–2266.

    Article  CAS  Google Scholar 

  • Andres, J.J. and Salopik, M., 1989. Meningeal cells increase in vitro astrocytic gap junctional communication as measured by fluorescence recovery after laser photobleaching. J. Neurocytol. 18:257–264.

    Article  Google Scholar 

  • Bennett, M.R. and Nurcombe, V., 1979. The survival and development of cholinergic neurons in skeletal muscle conditioned media. Brain Res. 173:543–548.

    Article  PubMed  CAS  Google Scholar 

  • Bologa, L., Z’Graggen, A., and Herschkowitz, N. 1983. Proliferation rate of oligodendrocytes in culture can be influenced by extrinsic factors. Devel. Neurosci. 6:26–31.

    Article  Google Scholar 

  • Bologa, L., Bisconte, J.C., Joubert, R., Marangos, P.J., Derbin, C., Rioux, F. and Herschkowitz, N. 1982. Accelerated differentiation of oligodendrocytes in neuronal rich mouse brain cell cultures. Brain Res. 252:129–136.

    Article  PubMed  CAS  Google Scholar 

  • Braquet, P. 1987. The ginkgolides: Potent platelet-activating factor antagonists isolated from Ginkgo biloba L.: Chemistry, pharmacology and clinical applications. Drugs Future 12:643–699.

    Google Scholar 

  • Braquet, P., Touqui, L., Shen, T.Y. and Vargaftig, B.B. 1987. Perspectives in platelet-activating factor research. Pharmacol. Rev. 39:97–145, 1987.

    PubMed  CAS  Google Scholar 

  • Brodie, C. and Vernadakis, A. 1990. Muscle-derived factors induce proliferation and astrocytic phenotypic expression in C-6 glial cells. GLIA (in press).

    Google Scholar 

  • Bussolino, F., Gremo, F., Tetta, C., Pescarmona, G.P. and Camussi, G. 1986. Production of platelet-activating factor by chick retina. J. Biol. Chem. 261:16502–16508.

    PubMed  CAS  Google Scholar 

  • Choi, B.H. and Kim, R.C. 1985. Expression of glial fibrillary acidic protein by immature Oligodendroglia and its implications. J. Neuroimmunol. 8:215–235.

    Article  PubMed  CAS  Google Scholar 

  • Choi, B.H., Kim, R.C. and Lapham, L.W. 1983. Do radial glia give rise to both astroglial and oligodendroglial cells? Dev. Brain Res. 8:119–130.

    Article  Google Scholar 

  • Davies, A.M. 1986. The survival and growth of embryonic proprioceptive neurons is promoted by a factor present in skeletal muscle. Dev. Biol. 115:56–67.

    Article  PubMed  CAS  Google Scholar 

  • Dohrmann, U., Edgar, D. and Theonen, H. 1987. Distinct neurotrophic factors from skeletal muscle and the central nervous system interact synergistically to support the survival of cultured embryonic spinal cord neurons. Dev. Biol. 124:145–152.

    Article  PubMed  CAS  Google Scholar 

  • Eccleston, P.A., Silberberg, D.H., 1984. The differentiation of oligodendrocytes in a serum-free hormone-supplemented medium. Dev. Brain Res. 16:1–9.

    Article  CAS  Google Scholar 

  • Fisher, R.A., Sharma, R.V. and Bhalla, R.C., 1989. Platelet-activating factor increases inositos phosphate production and cytosolic free Ca++concentrations in cultured rat Kupffer cells. FEBS Lett. 251:22–26.

    Article  PubMed  CAS  Google Scholar 

  • Flanigan, T.P., Dickson, J.G., and Walsh, F.S. 1985. Cell survival characteristics and choline acetlytransferase activity in motor neuron-enriched cultures from chick embryo spinal cord. J. Neurochem. 45:1323–1326.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine-Perus, J.C., Chancaine, M., Le Douerin, N.M., Gershon, M.D., and Rothman, T.P. 1989. Mitogenic effect of muscle on the neuroepithelium of the developing spinal cord. Development 107:413–422.

    PubMed  CAS  Google Scholar 

  • Ffrench-Constant, C. and Raff, M.C. 1986. Proliferating bipotential glial progenitor cells in adult rat optic nerve. Nature 319:499–502.

    Article  PubMed  CAS  Google Scholar 

  • Frost, G.H., Thangnipon, W. and Bottenstein, J.E. 1989. Glial progenitor growth factor assay using rat glima cells. Trans. Amer. Soc. Neurochem. 20:188.

    Google Scholar 

  • Galileo, D.S., Grag, G.E., Owens, G.C., Majors, J. and Sanes, J.R. 1990. Neurons and glia arise from a common progentor in chicken optic tectum: Demonstration with two retroviruses and cell type-specific antibodies. Proc. Natl. Acad. Sci. USA 87:458–462.

    Article  PubMed  CAS  Google Scholar 

  • Goldman, J.E., Geier, S.S. and Hirano, M. 1986. Differentiation of astrocytes and oligodendrocytes from germinal matrix cells in primary culture. J. Neurosci 6:52–60.

    PubMed  CAS  Google Scholar 

  • Greenberg, M.E., Ziff, E.B., and Greene, L.A. 1986. Stimulation of neuronal acetylcholine receptors induces rapid gene transcription. Science 234:80–83.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, S.F. and Bottenstein, J.E. Bipotential glial progenitors are targets of neuronal cell line-derived factors. Dev. Brain Res. 49:33–49.

    Google Scholar 

  • Kentroti, S., Baker, K., Bruce, C., and Vernadakis, A. 1990. Platelet-activating factor increases glutamine synthetase activity in early and late passage C-6 glioma cells. J. Neurosci. Res. (in press).

    Google Scholar 

  • Kornecki, E. and Ehrlich, Y.H., 1988: Neuroregulatory and neuropathological actions of the ether-phospholipid platelet-activating factor. Science 240:1792–1794.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., Aloisi, F. and Wilkins, G.P. 1987. Differentiation of cerebellar bipotential glial precursors into oligodendrocytes in primary culture: Developmental profile of surface antigens and mitotic activity. J. Neurosci. Res. 18:407–417.

    Article  PubMed  CAS  Google Scholar 

  • Levi, G., Gallo, V., and Ciotti, M.T. 1986. Bipotential precursors of putative fibrous astrocytes and oligodendrocytes in rat cerebellar cultures express distinct surfact featurs and “neuron-like” α-aminobutyric acid transport. Proc. Nat. Acad. Sci. USA 83:1504–1508.

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A. and Kater, S.B. 1989. Neurotransmitter regulation of neuronal growth, plasticity and survival. TINS 12:265–270.

    PubMed  CAS  Google Scholar 

  • Loret, C., Sensenbrenner, M. and Labourdette, G. 1989. Differential phenotypic expression induced in cultured rat astrocytes by acidic fibroblast growth factor, epidermal growth factor and thrombin. J. Biol. Chem. 264:8319–8327.

    PubMed  CAS  Google Scholar 

  • Mangoura, D., Sakellaridis, N., Jones, J., and Vernadakis, A. 1989. Early and late passage C-6 glial cell growth: Similarities with primary glial cells in culture. Neurochem. Res. 4:941–947.

    Article  Google Scholar 

  • Martinez-Hernandez, A., Bell, K.P., and Norenberg, M.D. 1977. Glutamine synthetase-glial localization in the brain. Science 195:1356–1358.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, R.A., Singer, R.H., Sarde, J.D., Pantazis, N.J., Blanchard, M.H., Byron, K.S., Arnason, B.G.W., and Young, M. 1977. Synthesis and secretion of a high molecular weight form of a nerve growth factor by skeletal muscle cells in culture. Proc. Natl. Acad. Sci. 74:4496–4500.

    Article  PubMed  CAS  Google Scholar 

  • Norenberg, M.D., and Martinez-Hernandez, A. 1979. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 161:303–310.

    Article  PubMed  CAS  Google Scholar 

  • Oh, T.H., Markelanis, G.J., Dion, T.L, and Hobbs, S.L. 1988. À muscle-derived substrate-bound factor that promotes neurite outgrowth from neurons of the central and peripheral nervous system. Dev. Biol. 127:88–98.

    Article  PubMed  CAS  Google Scholar 

  • Parker, K.K., Norenberg, M.D., and Vernadakis, A. 1980. Transdifferentiation11 of C-6 glial cells in culture. Science 208:179–181.

    Article  PubMed  CAS  Google Scholar 

  • Pernaud, F., Bensand, F., Pettman, R., Sensenbrenner, M. and Labourdette, L. 1988. Effects of acidic and basic growth factors αFGF and βFGF) on the proliferation of rat astroblasts in culture. Glia 1:124–131.

    Article  Google Scholar 

  • Poduslo, S.E. 1975. The isolation and characterization of a plasma membrane and myelin fraction derived from Oligodendroglia of calf brain. J. Neurochem. 24:647–664.

    PubMed  CAS  Google Scholar 

  • Poduslo, S.E. and Norton, W.T. 1972. Isolation and some chemical properties of Oligodendroglia from calf brain. J. Neurochem. 19:727–736.

    Article  PubMed  CAS  Google Scholar 

  • Prasad, K.N., Mandai, B., Waymire, J.C., Lees, G. J., Vernadakis, A. and Weiner, N. 1973. Basal level of neurotransmitter synthesizing enzymes and effect of cyclic AMP agents on the morphologcal differentiation of isolated neuroblastoma clones. Nature 241:117–119.

    CAS  Google Scholar 

  • Raff, M.D., Miller, R.H. and Noble, M. 1983. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 303:390–396.

    Article  PubMed  CAS  Google Scholar 

  • Ryan, J.P., Spinks, N.R., O’Neill, C., Ammit, A.J., Wales, R.G. 1989. Platelet-activating factor (PAF) production by mouse embryos in vitro and its effects on embryonic metabolism. J. Cell Biochem. 40:387–395.

    Article  PubMed  CAS  Google Scholar 

  • Sakellaridis, N., Mangoura, D., and Vernadakis, A. 1986. Effects of neuron-conditioned medium and fetal calf serum content on glial growth in dissociated cultures. Dev. Brain Res. 27:31–41.

    Article  CAS  Google Scholar 

  • Saneto, R.P. and de Vellis, J. 1985. Characterization of cultured rat oligodendrocytes proliferating in a serum-free, chemically defined medium. Proc. Natl. Acad. Sci. USA 82:3509–3513.

    Article  PubMed  CAS  Google Scholar 

  • Squinto, S.P., Block, A.L., Braquet, P. and Bazan, N.G. 1989. Platelet-activating factor stimulates a Fos/Jun/AP-1 transcriptional signaling system in human neuroblastoma cells. J. Neurosci. Res. 24:558–556.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.G. and Appel, S.H. 1983. Extracts of skeletal muscle increase neurite outgrowth and cholinergic activity of fetal rat spinal motor neurons. Science 219:1079–1081.

    Article  PubMed  CAS  Google Scholar 

  • Temple, S., and Raff, M.C. 1985. Differentiation of a bipotential glial progentor cell in single cell microculture. Nature 313:223–225.

    Article  PubMed  CAS  Google Scholar 

  • Trotter, J. and Schachner, M. 1989. Cells positive for the 04 surface antigen isolated by cell sorting are able to differentiate into astrocytes or oligodendrocytes. Dev. Brain Res. 115–122.

    Google Scholar 

  • Vernadakis, A. 1988. Neuronglia interrelations. Int. Neurobiol. Rev. 30:149–223.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Vernadakis, A., Kentroti, S., Brodie, C., Mangoura, D., Sakellaridis, N. (1991). C-6 Glioma Cells of Early Passage Have Progenitor Properties in Culture. In: Timiras, P.S., Privat, A., Giacobini, E., Lauder, J., Vernadakis, A. (eds) Plasticity and Regeneration of the Nervous System. Advances in Experimental Medicine and Biology, vol 296. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8047-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8047-4_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8049-8

  • Online ISBN: 978-1-4684-8047-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics