Skip to main content

Quaternary and Tertiary Structures of Isometric RNA Viruses

  • Chapter
Synchrotron Radiation in Structural Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 51))

  • 104 Accesses

Abstract

Small spherical RNA viruses infecting members of all five biological kingdoms have been subjects of biophysical studies for decades (Kaper, 1975; Argos and Johnson, 1984). Isolated from their hosts, these obligate parasites are homogeneous chemical entities that are now studied at atomic resolution using x-ray crystallography. In the crystal the virus exists in a resting or dormant state, however, particles released from dissolved crystals are fully infectious. Many viruses form crystalline inclusion bodies within their hosts (Martelli and Russo, 1977), suggesting that crystalline aggregates are a natural and stable state for storing virus particles. In the dormant state the viral capsid protects the nucleic acid from degradation and is essentially a storage protein. During other stages of the virus life cycle, the capsid protein participates in a variety of functions; some are listed in Table I. Although relatively few viruses have been investigated at atomic resolution (Table II), a clear pattern has emerged relating the quaternary structures of different virus capsids (Fig. 1) and the tertiary structures from different virus subunits (Fig. 2). Beyond the striking similarities there are differences in these virus structures that reflect unique strategies evolved for accomplishing required functions. In this paper the current understanding of the relationship between the structures of simple RNA viruses and their function will be discussed using, as examples, three structures recently determined in our laboratory (Hosur et al., 1987; Stauffacher et al., 1987; Chen et al., 1988). An introductory section on the structure determination of one of these viruses (beanpod mottle virus) will describe some of the modern methods of virus x-ray crystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abad-Zapatero, C., Abdel-Meguid, S. S., Johnson, J. E., Leslie, A. G. W., Rayment, I., Rossmann, M. G., Suck, D., and Tsukihara, T., 1980, Structure of southern bean mosaic virus at 28 A resolution, Nature (London), 286: 33.

    Article  Google Scholar 

  • Ahlquist, P., Strauss, E. G., Rice, C. M., Strauss, J. H., Haseloff, J., and Zimmern, D., 1985, Sind bis virus proteins ns P1 and ns P2 contain homology to nonstructural proteins from several RNA plant viruses, J. Virol., 53: 536.

    Google Scholar 

  • Argos, P., and Johnson, J. E., 1984, Chemical stability in simple spherical plant viruses, in: “Biological Macromolecules and Assemblies,” F. A. Jurnak and A. McPherson, eds., Wiley & Sons, New York.

    Google Scholar 

  • Argos, P., and Rossmann, M. G., 1980, Molecular replacement method, in: “Theory and Practice of Direct Methods in Crystallography,” M. F. C. Ladd and R. A. Palmer, eds., Plenum Press, New York.

    Google Scholar 

  • Bancroft, J. B., 1962, Purification and properties of bean pod mottle virus and associated centrifugal and electrophoretic components, Virology, 16: 419.

    Article  Google Scholar 

  • Berg, J., 1986, Potential metal-binding domains in nucleic acid binding proteins, Science, 232: 485.

    Article  Google Scholar 

  • Callahan, P. L., Mizutani, S., and Colonno, R. J., 1985, Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proc. Natl. Acad. Sci. U.S.A., 82: 732.

    Article  Google Scholar 

  • Caspar, D. L. D., and Klug, A., 1962, Physical principles in the construction of regular viruses, Cold Spring Harbor Symp. Quant. Biol., 27: 1.

    Article  Google Scholar 

  • Chen, Z., Stauffacher, C., Li, Y., Schmidt, T., Kamer, G., Shanks, M., Lomonossoff, G., and Johnson, J. E., 1988, Protein-nucleic acid interactions in a spherical virus: The structure of beanpod mottle virus at 3. 0 A resolution, Science, in preparation.

    Google Scholar 

  • Crick, F. H. C., and Watson, J. D., 1956, Structure of small viruses, Nature (London), 177: 473.

    Article  Google Scholar 

  • Dasmahapatra, B., Dasgupta, R., Ghosh, A., and Kaesberg, P., 1985, Structure of the black beetle virus genome and its functional implications, J. Mol.Biol., 182: 183.

    Article  Google Scholar 

  • Erickson, J., and Rossmann, M. G., 1982, Assembly and crystallization of a T=1 icosahedral particle from trypsinized southern bear mosaic virus coat protein, Virology, 116: 128.

    Article  Google Scholar 

  • Erickson, J. W., Silva, A. M., Murthy, M. N. R., Fita, I., and Rossmann, M. G., 1985, The Structure of a T=1 icosahedral empty particle from southern bean mosaic virus, Science, 229: 625.

    Article  Google Scholar 

  • Finch, J. T., Crowther, R. A., Hendry, D. A., and Struthers, J. K., 1974, The structure of nudaureha capersis virus: the first example of a capsíd with icosahedral surface symmetry T=4, J. Gen. Viral., 24: 191.

    Article  Google Scholar 

  • Francki, R., 1985, The viruses and their taxonomy, in: “The Plant Viruses, Vol. 1, Polyhedral Virions with Tripartite Genomes,” R. Franckí, H. Fraenkel-Conrat, and R. Wagner, eds., Plenum Press, New York.

    Google Scholar 

  • Fukuyama, K., Abdel-Meguid, S. S., Johnson, J. E., and Rossmann, M. G., 1983, Structure of a T=1 aggregate of alfalfa mosaic virus coat protein sent at 4.5 A resolution, J. Mol. Biol., 167: 873.

    Article  Google Scholar 

  • Gallagher, T., and Rueckert, R. R., 1988, Assembly-dependent maturation cleavage in provirions of a small icosahedral insect ribovirus, J. Gen. Virol., in press.

    Google Scholar 

  • Harrison, S. C., Olson, A. J., Schutt, C. E., Winkler, F. K., and Bricogne, G., 1978, Tomato bushy stunt virus at 2.9 A resolution, Nature (London), 276: 368.

    Article  Google Scholar 

  • Hogle, J. M., Chow, M., and Filman, D. J., 1985, Three-dimensional structure of poliovirus at 2.9 A resolution, Science, 229: 1358.

    Article  Google Scholar 

  • Hogle, J. M., Maeda, A., and Harrison, S. C., 1986, Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 A resolution, J. Mol. Biol., 191: 625.

    Article  Google Scholar 

  • Hosur, M. V., Schmidt, T., Tucker, R. C., Johnson, J. E., Gallagher, T. M., Selling, B. H., and Rueckert, R. R., 1987, Structure of an insect virus at 3.0 A resolution, Proteins, 2: 167.

    Article  Google Scholar 

  • Jones, T. A. and Liijas, L., 1984, Structure of satellite tobacco necrosis virus after crystallographic refinement at 2.5 A resolution, J. Mol. Biol., 177: 735.

    Article  Google Scholar 

  • Kaper, J. M., 1975, “The Chemical Bases of Virus Structure, Disassociation and Reassembly,” American Elsevier, New York.

    Google Scholar 

  • Koch, F., and Koch G., 1985, “The Molecular Biology of Poliovirus,” Springer-Verlag, New York.

    Book  Google Scholar 

  • Kraut, J., 1977, Serine protease: structure and mechanism of catalysis, in: “Annual Review of Biochemistry,” Academic Press, New York.

    Google Scholar 

  • Luo, M., Vriend, G., Kamer, G., Minor, I., Arnold, E., Rossmann, M. G., Boege, U., Scraba, D. G., Duke, G. M., and Palmenberg, A. C., 1987, The atomic structure of mengo virus at 3.0 A resolution, Science, 235: 182.

    Article  Google Scholar 

  • Martelli, G. P., and Russo, M., 1977, Plant virus inclusion bodies, Adv. Virus Res., 21: 175.

    Article  Google Scholar 

  • McPherson, A., 1982, “Preparation and Analysis of Protein Crystals,” Wiley & Sons, New York.

    Google Scholar 

  • Miller, J., McLachlan, A., and Klug, A., 1985, Repetitive zinc-binding domains in the protein transcription factor. III. A from Xenopus oocytes, EMBO J., 4: 1609.

    Google Scholar 

  • Nickerson, K. W., and Lane, L. C., 1977, Polyamine content of several RNA plant viruses, Virology, 81: 455.

    Article  Google Scholar 

  • Olson, A. J., Bricogne, and Harrison, S. C., 1983, Structure of tomato bushy stunt virus. IV. The virus particle at 2.0 A resolution, J. Mol. Biol., 171: 61.

    Article  Google Scholar 

  • Olson, N. H., Baker, T. S., Bomu, W., Johnson, J. E., and Hendry, D. A., 1987, The three-dimensional structure of frozen-hydrated nudaurelia capersis virus, in: “Proc. 45th Ann. Meet. Elec. Microscopy Soc. of Am.,” San Francisco Press, California.

    Google Scholar 

  • Rayment, I. A., Baker, T. S., Caspar, D. L. D., and Murakami, W., 1982, Polyoma virus capsid structure at 22.5 A resolution, Nature, 295: 110.

    Article  Google Scholar 

  • Richardson, J. S., 1979, The anatomy and taxonomy of protein structure, Adv. Prot. Chem., 34: 167.

    Article  Google Scholar 

  • Roberts, M. M., White, J. L., Grutter, and Burnett, R. M., 1986, Three-dimensional structure of the adenovirus major coat protein hexon, Science, 232: 1148.

    Article  Google Scholar 

  • Robinson, I. K., and Harrison, S. C., 1982, Structure of the expanded state of tomato bushy stunt virus, Nature, 297: 563.

    Article  Google Scholar 

  • Rossmann, M. G., 1979, Processing oscillation diffraction data for very large unit cells with an automatic convolution technique and profile fitting, J. Appl. Crystallogr., 12: 225.

    Article  Google Scholar 

  • Rossmann, M. G., and Blow, D. M., 1962, The detection of sub-units within the crystallographic asymmetric unit, Acta Crystallogr., 15: 24.

    Article  Google Scholar 

  • Rossmann, M. G., and Rueckert, R. R., 1987, What does the molecular structure of viruses tell us about viral functions? Microbial. Sci., 4: 206.

    Google Scholar 

  • Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S., and Tsukihara, T., 1979, Processing and post-refinement of oscillation camera data, J. Appl. Crystallogr., 12: 570.

    Article  Google Scholar 

  • Rossmann, M. G., Arnold, E., Erickson, J. W., Frankenberger, E. A., Griffith, J. P., Hecht, H. J., Johnson, J. E., Kamer, G., Luo, M., Mosser, A. G., Rueckert, R. R., Sherry, B., and Vriend, G.,1985, Structure of a human common cold virus and functional relationship to other picornaviruses, Nature (London), 317: 145.

    Article  Google Scholar 

  • Savithri, H. S., and Erickson, J. W., 1983, The self-assembly of the cowpea strain of southern bean mosaic virus: formation of T=1 and T=3 nucleo protein particles, Virology, 126: 328.

    Article  Google Scholar 

  • Sehnke, P. C., and Johnson, J. E., 1988, Crystallization of a proteolytically modified subunut of tobacco streak virus, Virology, in preparation.

    Google Scholar 

  • Sehnke, P. C., Harrington, M., Hosur, M. V., Li, Y., Usha, R., Tucker, R. C., Bomu, W., Stauffacher, C. V., and Johnson, J. E., 1988a, Crystallization of viruses and virus proteins, J. Crystal Growth, in press.

    Google Scholar 

  • Sehnke, P. C., Mason, A., Hood, S. J., Lister, R. M., and Johnson, J. E., 1988b, A zinc-finger type binding domain in tobacco streak virus coat protein, unpublished.

    Google Scholar 

  • Shaw, J. G., 1985, Early events in plant virus infections, in: “Molecular Plant Virology, Vol. II,” J. W. Davies, ed., CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Sherry, B., Masser, A. G., Colonno, R. J., and Rueckert, R. R., 1986, Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14, J. Viral., 57: 246.

    Google Scholar 

  • Silva, A. M., and Rossmann, M. G., 1987, Refined structure of southern bean mosaic virus at 2.9 A resolution, J. Mol. Biol., 197: 69.

    Article  Google Scholar 

  • Stauffacher, C. V., Usha, R., Harrington, M., Schmidt, T., Hosur, M. V., and Johnson, J. E., 1987, The structure of cowpea mosaic virus at 3.5 A resolution, Crystallogr. Mol. Biol., 126: 293.

    Google Scholar 

  • van Wezenbeek, P., Verver, J., Harmsen, J., Vos, P., and van Kammen, A., 1983, Primary structure and gene organization of the middle component RNA of cowpea mosaic virus, EMBO J., 2: 941.

    Google Scholar 

  • Varghese, J. N., Laver, W. G., and Colman, P. M., 1983, Structure of the influenza virus glycoprotein antigen neuraninidase at 2.9 A resolution, Nature, 303: 35.

    Article  Google Scholar 

  • Wilson, I. A., Skehel, J. J., and Wiley, D. C., 1981, Structure of the lae magglutinin membrane glycoprotein of influenza virus at 3 A resolution, Nature, 289: 366.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Johnson, J.E. et al. (1989). Quaternary and Tertiary Structures of Isometric RNA Viruses. In: Sweet, R.M., Woodhead, A.D. (eds) Synchrotron Radiation in Structural Biology. Basic Life Sciences, vol 51. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8041-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8041-2_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8043-6

  • Online ISBN: 978-1-4684-8041-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics