Skip to main content

Quantum Mechanically Based Rules for Thermal and Photochemical Reactions

  • Conference paper
Photochemistry of Macromolecules
  • 117 Accesses

Abstract

There are at least three approaches necessary for the application of quantum mechanical considerations to the analysis of the mechanisms of thermal and photochemical reactions. These approaches are: i) generalized rules for correlating the electronic states of the starting materials and the products; ii) direct computational estimates of the potential energy surfaces and other properties of the systems under consideration, and iii) qualitative rules by which the possible shapes of the potential energy surfaces can be predicted or the possible course of the reactions can be rationalized. Approaches i and iii provide a theoretical base for building the necessary qualitative understanding of thermal and photochemical reactions and ii provides a route for partially testing that understanding. Since there is no comprehensive discussion of all these factors in the literature this paper will attempt to correlate these approaches with what has been found to date. No attempt is made, however, to give a complete review of the literature on this subject. Particular emphasis has been given to the recent literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Herzberg, “Spectra of Diatomic Molecules,” Chapt. 3, D. Van Nostrand (1950).

    Google Scholar 

  2. G. Herzberg, “Electronic Spectra of Polyatomic Molecules,” Chapt. 3, D. Van Nostrand (1966).

    Google Scholar 

  3. Ref. 2, pp. 429–437.

    Google Scholar 

  4. J. R. McNesby and H. Okabe, “Advances in Photochemistry,” Vol. 3, p. 185, Interscience (1964).

    Google Scholar 

  5. C. A. Coulson, “Reactivity of the Photo-excited Organic Molecule,” pp. 1–49, Proc. of the 13th Conference of the Solvay Institute (1965), Interscience (1967).

    Google Scholar 

  6. D. Phillips, J. Lemaire, C. S. Burton, W. A. Noyes, Jr., “Advances in Photochemistry,” Vol. 5, pp. 329–364, Wiley and Sons (1968).

    Google Scholar 

  7. R. A. Young, G. Black, and T. G. Slanger, J. Chem. Phys., 48, 2067 (1968).

    Article  CAS  Google Scholar 

  8. J. G. Calver and J. N. Pitts, Jr., “Photochemistry,” pp. 622–624, Wiley and Sons (1966).

    Google Scholar 

  9. J. S. Swenton, J. Chet. Ed., 46, 217 (1969).

    CAS  Google Scholar 

  10. C. H. Bibart, M. C. Rockley and F. S. Wettack, J. Am. Chem. Soc., 91, 2802 (1969).

    Article  CAS  Google Scholar 

  11. E. J. Baum, L. D. Hess, J. R. Wyatt and J. N. Pitts, Jr., Ibid, 91, 2461 (1969).

    CAS  Google Scholar 

  12. H. L. Hyndman, B. M. Monroe, and G. S. Hammond, Ibid, 91, 2852 (1969)

    CAS  Google Scholar 

  13. J. Saltiel, K. R. Neuberger, and M. Wrighton, Ibid, 91, 3658 (1969).

    CAS  Google Scholar 

  14. N. E. Lee and E. K. C. Lee, J. Chem. Phys., 50, 2094 (1969).

    Article  CAS  Google Scholar 

  15. H. E. Zimmerman and R. W. Elser, J. Am. Chem. Soc., 91, 887 (1969).

    Article  CAS  Google Scholar 

  16. P. S. Mariano, ibid, 91, 1718 (1969).

    Google Scholar 

  17. A. Padwa, W. Eisenhardt, R. Gruber and D. Pashayan, Ibid, 91, 1857 (1969).

    CAS  Google Scholar 

  18. J. N. Pitts, Jr., D. R. Burley, J. C. Mani and A. P. Broadbent, Ibid, 90, 5902 (1968).

    CAS  Google Scholar 

  19. H. E. Zimmerman and K. G. Hancok, Ibid, 90, 3749 (1968).

    CAS  Google Scholar 

  20. T. Förster, Angew, Chemie (Eng. Ed.), 8, 333 (1969).

    Article  Google Scholar 

  21. S. P. McGlynn, T. Azumi, and M. Kinoshita, “Molecular Spectroscopy of the Triplet State,” pp. 88–90, Prentice Hall (1969).

    Google Scholar 

  22. H. Morrison and R. Kleopfer, J. Am. Chem. Soc., 90, 5037 (1968).

    Article  CAS  Google Scholar 

  23. P. J. Wagner and D. J. Buckeck, Ibid, 90, 6531 (1968).

    Google Scholar 

  24. H. Ymazaki and R. J. Cventanovic, Ibid, 91, 521 (1969).

    Google Scholar 

  25. N. J. Turro and P. A. Wriede, Ibid, 91, 6863 (1969).

    Google Scholar 

  26. E. L. Wehry and L. B. Rogers in “Fluorescence and Phosphorescence Analysis,” ed. D. M. Hercules, pp. 125–135.

    Google Scholar 

  27. H. E. Zimmerman and R. R. Sandel, J. Am. Chem. Soc., 85, 915 (1963).

    Article  CAS  Google Scholar 

  28. A Zweig, Advances in Photochemistry, Vol. 6, pp. 425–449, Wiley and Sons (1969).

    Google Scholar 

  29. J. P. Paris, ref. 26, pp. 190–193.

    Google Scholar 

  30. H. S. Pilloff and A. C. Albrecht, J. Chem. Phys., 49, 4891 (1968).

    Article  CAS  Google Scholar 

  31. E. M. Evleth, Chem. Phys. Letters, 3, 122 (1969).

    Article  CAS  Google Scholar 

  32. P. Borrell and H. H. Greenwood, Proc. Roy. Soc., (London) A298, 453 (1967).

    Article  CAS  Google Scholar 

  33. K. Inuzuka and R. S. Becker, Nature, 219, 383 (1968).

    Article  CAS  Google Scholar 

  34. B. S. Rabinovitch, J. E. Douglas and F. S. Loonly, J. Chem. Phys. 20, 1807 (1952).

    Article  CAS  Google Scholar 

  35. S. W. Benson, “The Foundations of Chemical Kinetics,” Table XI.3, p. 254, McGraw-Hill (1960).

    Google Scholar 

  36. The issue of the possible singlet route for photo-cis-transisomerization is not completely resolved for the butadienes and stilbenes. Experiments to date that it does occur, see Refs. 37 and 38.

    Google Scholar 

  37. R. Srinivasan, J. Am. Chem. Soc., 90, 4498 (1968).

    Article  CAS  Google Scholar 

  38. J. Saltiel and E. D. Megarity, Ibid, 91, 1265 (1969)

    CAS  Google Scholar 

  39. N. J. Turro, “Molecular Photochemistry,” pp. 212–216, W. A. Benjamin (1967).

    Google Scholar 

  40. W. G. Dauben, Ref. 5, p. 174.

    Google Scholar 

  41. G. S. Hammond, Ref. 5, pp. 313–315.

    Google Scholar 

  42. W. Th. A. M. Van der Lugt and L. J. Oosterhoff, Chem. Comm., 1235 (1968).

    Google Scholar 

  43. G. M. J. Schmidt, Ref. 5, pp. 268–277.

    Google Scholar 

  44. W. F. Richey and R. S. Becker, J. Chem. Phys., 49, 2092 (1968).

    Article  CAS  Google Scholar 

  45. A. G. Wahl, P. J. Bertoncini, G. Das, and T. L. Gilbert, Int. J. Quant. Chem. 1, 123 (1967).

    Article  Google Scholar 

  46. B. Levy and G. Berthier, ibid, 2, 307 (1967).

    Google Scholar 

  47. A. Veillard and E. Clementi, Theoret. Chim. Acta (Berl.), 13, 7, 133 (1967).

    Article  Google Scholar 

  48. R. J. Buenker and S. D. Peyerimoff, Ibid, 12, 183 (1968).

    CAS  Google Scholar 

  49. R. C. Morrison and G. A. Gallup, J. Chem. Phys., 50, 1214 (1969).

    Article  CAS  Google Scholar 

  50. W. A. Goddard, Phys. Rev., 157, 73, 81 (1967).

    Article  CAS  Google Scholar 

  51. J. P. Malrieu, Photochem. and Photobiol., 7, 531 (1968).

    Article  CAS  Google Scholar 

  52. N. L. Allinger and T. S. Stuart, J. Chem. Phys., 47, 4611 (1967).

    Article  CAS  Google Scholar 

  53. E. M. Evleth, ibid., 46, 4151 (1967).

    Google Scholar 

  54. S. D. Peyerimoff and R. J. Buenker, Ibid, 49, 2261 (1968).

    Google Scholar 

  55. R. J. Buenker and L. L. Whitten, Ibid, 49, 5381 (1968).

    CAS  Google Scholar 

  56. S. D. Peyerimoff and R. J. Buenker, Ibid, 49, 2473 (1968).

    Google Scholar 

  57. R. Hoffmann, ibid, 39, 1397 (1964)

    Google Scholar 

  58. R. J. Buenker, Ibid, 48, 1368 (1968).

    CAS  Google Scholar 

  59. U. Kaldor and I. Shavitt, 48, 191 (1968).

    CAS  Google Scholar 

  60. D. T. Clark and D. R. Armstrong, Theoret. Chim. Acta, 13, 365 (1969).

    Article  CAS  Google Scholar 

  61. J. J. McCullough, H. Ohorodnyk and D. P. Santry, Chem. Comm., 570 (1969).

    Google Scholar 

  62. G. Feier, Theoret. Chim. Acta, 12, 412 (1968).

    Article  Google Scholar 

  63. A. C. Hopkinson, R. A. McClelland, K. Yates and I. G. Csizmadia, Ibid, 13, 81 (1969).

    Google Scholar 

  64. A. S. N. Murthy, R. E. Davis, and C. N. R. Rao, Ibid, 13, 81 (1969).

    CAS  Google Scholar 

  65. D. B. Chesnut and R. W. Moseley, Ibid, 13, 230 (1969).

    CAS  Google Scholar 

  66. J. M. Lehn, B. Munsch, P. Millie, and A. Veillard, Ibid, 13, 313 (1969).

    CAS  Google Scholar 

  67. K. Morokuma and L. Pedersen, J. Chem. Phys., 48, 3275 (1968).

    Article  CAS  Google Scholar 

  68. E. Clementi and A. Clementi, Ibid, 47, 3837 (1967).

    CAS  Google Scholar 

  69. J. A. Pople, D. P. Santry and G. A. Segal, Ibid, 43, 5129 (1965).

    Google Scholar 

  70. H. H. Jaffe, Acc. of Chem. Res., 2, 136 (1969).

    Article  CAS  Google Scholar 

  71. M. J. S. Dewar in “Molecular Orbital Theory of Organic Chemistry”.

    Google Scholar 

  72. C. Giessner-Prettre and A. Pullman, Theoret. Chim. Acta, 13, 265 (1969).

    Article  CAS  Google Scholar 

  73. J. Del Bene and H. H. Jaffee, J. Chem. Phys., 48, 1807, 4050 (1968).

    Article  Google Scholar 

  74. More recent calculations including doubly excited configurations by these authors are in press.

    Google Scholar 

  75. M. A. Robb and I. G. Csizmadia, J. Chem. Phys., 50, 1819, (1969).

    Article  CAS  Google Scholar 

  76. For a discussion of Walsh’s rules see Chapter 3, Ref. 2.

    Google Scholar 

  77. H. C. Longuet-Higgins and E.. Abrahamson, J. Am. Chem. Soc., 2045 (1965).

    Google Scholar 

  78. R. B. Woodward and R. Hoffmann, Ibid, 87, 395 (1965).

    CAS  Google Scholar 

  79. R. Hoffmann and R. B. Woodward, Acc. of Chem. Res., 1, 17 (1968).

    Article  CAS  Google Scholar 

  80. J. J. Volmer and K. L. Servis, J. Chem. Ed., 45, 214 (1968).

    Google Scholar 

  81. G. B. Gill, Quart. Rev., 22, 338 (1968).

    Article  CAS  Google Scholar 

  82. Ref. 2, pp. 533–535.

    Google Scholar 

  83. E. M. Evleth, J. Am. Chem. Soc., 89, 6445 (1967).

    Article  CAS  Google Scholar 

  84. H. E. Zimmerman, “Advances in Photochemistry,” Vol. 1, pp. 183–207 Interscience (1963).

    Google Scholar 

  85. Ref. 39, A discussion of the limitation of the use of such structures, pp. 162–170 and pp.237–241.

    Google Scholar 

  86. H. E. Zimmerman, R. W. Binkely, J. J. McCullough, and G. Zimmerman, J. Am. Chem. Soc., 89, 6589 (1967).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this paper

Cite this paper

Evleth, E.M. (1970). Quantum Mechanically Based Rules for Thermal and Photochemical Reactions. In: Reinisch, R.F. (eds) Photochemistry of Macromolecules. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8035-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8035-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8037-5

  • Online ISBN: 978-1-4684-8035-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics