Skip to main content

Stopping Power of Hot Plasmas and Cold Solids: Dielectric and Transport Cross Section Formulations

  • Chapter
Interaction of Charged Particles with Solids and Surfaces

Part of the book series: Nato ASI Series ((NSSB,volume 271))

Abstract

One of the relevant problems in studies of fusion plasmas is the energy loss of test particles to thermalized plasma electrons. Evaluations of the energy loss of charged particles of various energies are currently needed to describe the heating of dilute and dense fusion plasmas, as well as in studies of the energy transport in the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Speth, Rep. Prog. Phys. 52 (1989) 57.

    Article  ADS  Google Scholar 

  2. T.A. Mehlhorn, J. Appl. Phys. 52 (1981) 6522.

    Article  ADS  Google Scholar 

  3. N.R. Arista and W. Brandt, Phys. Rev. A23 (1981) 1898.

    Google Scholar 

  4. G. Maynard and C. Deutsch, Phys. Rev. A26 (1982) 665.

    ADS  Google Scholar 

  5. C. Deutsch, G. Maynard, and H. Minoo, J. Physique 44-C8 (1983) 67.

    Google Scholar 

  6. N.R. Arista, J. Phys. C18 (1985) 5127.

    ADS  Google Scholar 

  7. C. Gouedard and C. Deutsch, J. Math. Phys. 19 (1978) 32.

    Article  ADS  Google Scholar 

  8. N.R. Arista and W. Brandt, Phys. Rev. A29 (1984) 1471.

    Google Scholar 

  9. R.G. Dandrea, N.W. Ashcroft and A.E. Carlsson, Phys. Rev. B34 (1986) 2097.

    Google Scholar 

  10. J. Lindhard and A. Winther, K. Danske Vidensk. Selsk., Mat.-Fys. Medd. 34 (1964) No.4.

    Google Scholar 

  11. L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York (1962).

    Google Scholar 

  12. L. de Ferraris and N.R. Arista, Phys. Rev. A29 (1984) 2145.

    Google Scholar 

  13. N.R. Arista and W. Brandt, Phys. Rev. A30 (1984) 630.

    ADS  Google Scholar 

  14. F.C. Young et al, Phys. Rev. Lett. 49 (1982) 549.

    Article  ADS  Google Scholar 

  15. J.N. Olsen et al, J. Appl. Phys. 58 (1985) 2958.

    Google Scholar 

  16. B. Goel and H. Bluhm, J. Physique 12-C7 (1988) 169.

    Google Scholar 

  17. D.H.H. Hoffmann et al, Z. Phys. A30 (1988) 339;

    ADS  Google Scholar 

  18. D.H.H. Hoffmann, J. Physique 12-C7 (1988) 159;

    Google Scholar 

  19. D. Gardes et al, Europhys. Lett. 8 (1988) 701; J. Physique 12-C7 (1988) 151.

    Article  ADS  Google Scholar 

  20. E. Nardi, E. Peleg, and Z. Zinamon, Phys. Fluids 21 (1978) 574.

    Article  ADS  Google Scholar 

  21. T.A. Mehlhorn, J. Appl. Phys. 52 (1981) 6522.

    Article  ADS  Google Scholar 

  22. N.R. Arista and A.R. Piriz, Phys. Rev. A35 (1987) 3450.

    ADS  Google Scholar 

  23. R.E. Marshak and H.A. Bethe, Astrophys. J. 91 (1940) 239;

    Article  ADS  Google Scholar 

  24. R.P. Feynman, N. Metropolis and E. Teller, Phys. Rev. 75 (1949) 1561;

    Article  ADS  MATH  Google Scholar 

  25. R. Latter, Phys. Rev. 99 (1955) 1854.

    Article  ADS  MATH  Google Scholar 

  26. J. Lindhard and M. Scharff, K. Danske Vidensk. Selsk. Mat.-Fys. Medd. 27 (1953) No.15.

    Google Scholar 

  27. N.R. Arista, J. Phys. C19 (1986) L841.

    ADS  Google Scholar 

  28. M. Gryzinski, Phys. Rev. 107 (1957) 1471.

    Google Scholar 

  29. S.T. Butler and M.J. Buckingham, Phys. Rev. 126 (1962) 1.

    Article  MathSciNet  ADS  Google Scholar 

  30. A somewhat similar expression was obtained by P. Sigmund, Phys. Rev. A26 (1982) 2497, who expanded the solutions analytically, for low and high velocities.

    Google Scholar 

  31. M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, Dover, New York (1970).

    Google Scholar 

  32. J.S. Briggs and A.P. Pathak, J. Phys. C6 (1973) L153; ibid.C7 (1974) 1929.

    ADS  Google Scholar 

  33. T.L. Ferrell and R.H. Ritchie, Phys. Rev. B16 (1977) 115.

    ADS  Google Scholar 

  34. P.M. Echenique, R.M. Nieminen and R.H. Ritchie, Solid State Commun. 37 (1981) 779.

    Article  ADS  Google Scholar 

  35. M.J. Puska and R.M. Nieminen, Phys. Rev. B27 (1983) 612.

    ADS  Google Scholar 

  36. A. Cherubini and A. Ventura, Lett. Nuovo Cim. 44 (1985) 503.

    Article  Google Scholar 

  37. J.C. Ashley, A. Gras-Marti and P.M. Echenique, Phys. Rev. A34 (1986) 2495.

    Google Scholar 

  38. I. Nagy, A. Arnau, and P.M. Echenique, Phys. Rev. B38 (1988) 9191; Phys. Rev. A40 (1989) 987

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Arista, N.R. (1991). Stopping Power of Hot Plasmas and Cold Solids: Dielectric and Transport Cross Section Formulations. In: Gras-Marti, A., Urbassek, H.M., Arista, N.R., Flores, F. (eds) Interaction of Charged Particles with Solids and Surfaces. Nato ASI Series, vol 271. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-8026-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-8026-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-8028-3

  • Online ISBN: 978-1-4684-8026-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics