Skip to main content

Zinc-Binding Proteins in the Brain

  • Chapter
Excitatory Amino Acids and Epilepsy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 203))

Abstract

As an essential substance, zinc is involved in maintaining the functions and/or the structures of at least 200 metalloenzymes that participate in numerous biochemical reactions, including the metabolism of proteins and nucleic acids. The steady-state concentration of zinc in the brain must be regulated firmly since both an excess and a deficiency of zinc have been implicated in neurological disorders including epilepsy. Zinc-binding proteins have been detected in the bovine hippocampus, cerebellum, and pineal gland. A metallothionein-like protein has been identified recently in the rat brain which resembles in some but not all aspects a hepatic metallothionein. The synthesis of this protein is stimulated following the administration of zinc 40 copper but not of cadmium. The zinc-stimulated protein incorporates 35S cysteine 24-fold higher than the native, unstimulated protein; is blocked by actinomycin D; produces two isoforms by ion exchange chromatography on DEAE Sephadex A 25 columns; and by high performance liquid chromatography, depicts a similar but not identical profile to zinc-stimulated hepatic metallothionein. Since the synthesis of this protein is stimulated following the administration of zinc and is depressed in the brains of zinc-deficient rats, it is postulated that the unbound pool of zinc may serve as one of the factors involved in regulating the synthesis of this protein. Since zinc in physiological concentrations stimulates a number of pyridoxal phosphate-dependent reactions and in pharmacological doses inhibits an extensive number of SH-containing enzymes and receptor sites for neurotransmitters, we postulate that the metallothionein-like protein in the brain may have function(s) associated with zinc homeostasis and perhaps events related to synaptic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alley, M.C., Killam, E.K., and Fisher, G.L., 1983, The influence of D-peni- cillamine treatment upon seizure activity and trace metal status in the Senegalese baboon, Pardo panic, J, Pharmacol. Exp. Ther., 217: 138.

    Google Scholar 

  • Awad, A., and Ebadi, M., 1985, The characteristics of metallothioneins in bovine pineal gland, Fed. Proc., 44: 3053.

    Google Scholar 

  • Baraldi, M., Caselgrandi, E., Borella, P., and Zeneroli, M.L., 1983, Decrease of brain zinc in experimental hepatic encephalopathy, Brain Res., 258: 170.

    Article  CAS  Google Scholar 

  • Bastek, J., Bogden, A., Cinotti, W., Tenhove, G., Stephans, M., Markopoulos, M., and Charles, J., 1976, Trace metals in a family with sex-linked retinitis pigmentosa, in: Retinitis Pigmentosa, M.B. Landers, III,M.L. Wolbarsht, J.E. Dowling and A.M. Latios, eds., Plenum Press, New York, p. 43.

    Google Scholar 

  • Baudier, J., and Gerard, D., 1983, Ions binding to 5100 proteins: structural changes induced by calcium and zinc on S100a and S100b proteins,Biochemistry, 22: 3360.

    Article  PubMed  CAS  Google Scholar 

  • Baudier, J., Haglid, K., Haiech, J., and Gerard, D., 1983, Zinc ion binding to human brain calcium binding proteins, calmodulin and S100b protein, Biochem. Biophvs. Res. Comm., 114: 1138.

    Article  CAS  Google Scholar 

  • Baudier, J., Labourdette, G., and Gerard, D., 1985, Rat brain S100b protein: purification, characterization, and ion binding properties. A comparison with bovine S100b protein, J. Neurochem., 44: 76.

    Article  PubMed  CAS  Google Scholar 

  • Ben-Ari, Y., and Krnjevié, K., 1981, Actions of GABA on hippocampal neurons with special reference to the aetiology of epilepsy, in: Neurotransmitters, Seizures, and Epilepsy, P.L. Morselli, K.G. Lloyd, W. Löscher,B. Meldrum and E.H. Reynolds, eds., Raven Press, New York, p. 63.

    Google Scholar 

  • Borges, L.F., and Gucer, d., 1978, Effect of magnesium on epileptic foci, Epilepsia, 19: 81.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, G.J., Aster, J.C., Knutsen, C.A., and Kruckeberg, W.C., 1979, Zinc inhibition of calmodulin: a proposed molecular mechanism of zinc action on cellular functions, Am. J. Hematol., 7: 53.

    Article  PubMed  CAS  Google Scholar 

  • Brewer, G.J., Hill, G.M., Prasad, A.S., and Cossack, Z.T., 1983, Biological roles of ionic zinc, in: Zinc Deficiency in Human Subjects, A.S. Prasad, A.O. Cavdar, G.J. Brewer, and P.J. Aggett, eds., Alan R. Liss, Inc., New York, p. 35.

    Google Scholar 

  • Buell, S.J., Fosmire, G.J., 011erich, D.A., and Sandstead, H.H., 1977, Effects of postnatal zinc deficiency on cerebellar and hippocampal development in the rat, EXp. Neurol., 55: 199.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R.W., and Ganther, H.E., 1975, Relative cadmium binding capacity of metallothionein and other cytosolic fraction in various tissues of the rat, Environ. Physiol. Biochem., 5: 235.

    PubMed  CAS  Google Scholar 

  • Chung, S.H., and Johnson, M.S., 1983, Divalent transition-metal ions (Cu2+ and Zn2+) in the brains of epileptogenic and normal mice, Brain Res., 280: 323.

    Article  PubMed  CAS  Google Scholar 

  • Constantinidis, J., and Tissot, R., 1981, Role of glutamate and zinc in the hippocampal lesions of Pick’s disease, in: Glutamate as a Neurotransmitter, G. DiChiara and G.L. Gessa, eds., Raven Press, New York, p. 413.

    Google Scholar 

  • Cousins, R.J., 1985, Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin, Physiol. Rev., 65: 238.

    Google Scholar 

  • Crawford, I.L., and Harris, N.F., 1984, Distribution and accumulation of zinc in whole brain and subcellular fractions of hippocampal homogenates, in: The Neurobiology of Zinc, Part A. Physiochemistry, Anatomy and Techniques, C.J. Frederickson, G.A. Howell, and E.J. Kasarskis, eds., Alan R. Liss, Inc., New York, p. 157.

    Google Scholar 

  • Denner, L.A., and Wu, J.-Y., 1985, Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate, J. Neurochem., 44: 957.

    Article  PubMed  CAS  Google Scholar 

  • De Vries, D.J., and Beart, P.M., 1985, Competitive inhibition of [3H] spiperone binding to D-2 dopamine receptors in striatal homogenates by organic calcium channel antagonists and polyvalent cations, Eur. J. Pharmacol., 106: 133.

    Article  Google Scholar 

  • Donaldson, J., St. Pierre, T., Minnich, J.L., and Barbeau, A., 1971, Seizures in rats associated with divalent cation inhibiton of Na+K+ATPase, Can.J. Bioçhem., 49: 1217.

    Google Scholar 

  • Dore-Duffy, P., Catalanotto, F., Donaldson, J.O., Ostrom, K.M., and Testa, M.A., 1983, Zinc in multiple sclerosis, Ann. Neurol., 14: 450.

    Article  PubMed  CAS  Google Scholar 

  • Dreosti, I.E., 1984, Zinc in the central nervous system: the emerging interactions, in: The Neurobiology of Zinc. Part A. Physiochemistry. Anatomy and Techniques, A.J. Frederickson, G.A. Howell, and E.J. Kasarskis, eds., Alan R. Liss, Inc., New York, p. 1.

    Google Scholar 

  • Dvergsten, C.L., Fosmire, G.J., 011erich, D.A., and Sandstead, H.H., 1983, Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. I. Impaired acquisition of granule cells, Brain Res., 271: 217.

    Article  PubMed  CAS  Google Scholar 

  • Dvergsten, C.L., Fosmire, G.J., 011erich, D.A., and Sandstead, H.H., 1984a, Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. H. Impaired maturation of Purkinje cells, Dev. Brain Res., 16: 11.

    Article  CAS  Google Scholar 

  • Dvergsten, C.L., Johnson, L.A., and Sandstead, H.H., 1984b, Alterations in the postnatal development of the cerebellar cortex due to zinc deficiency. III. Impaired dendritic differentiation of basket and stellate cells, Dev, Brain Res., 16: 21

    Article  CAS  Google Scholar 

  • Ebadi, M Itoh, M., Bifano, J., Wendt, K., and Earle, A., 1981, The role of Zn1+ in pyridoxal phosphate-mediated regulation of glutamie acid decarboxylase in brain, Int. J. Bioçhem., 13: 1107.

    Article  PubMed  CAS  Google Scholar 

  • Ebadi, M., 1984a, Characterization of zinc binding ligand in rat brain, Trans. Soc. Neurosci., 14: 1062.

    Google Scholar 

  • Ebadi, M., 1984b, The presence of metallothionein-like protein in rat brain, Fed. Proc., 43, 3317.

    Google Scholar 

  • Ebadi, M., and Pfeiffer, R.F., 1984, Zinc in neurological disorders and in experimentally induced epileptiform seizures, in: The Neurobiology of Zinc. Part B, Deficiency. Toxicity. and Pathology, C.J. Frederickson, G.A. Howell, and E.J. Kasarskis, eds., Alan R. Liss, Inc., New York,p. 307.

    Google Scholar 

  • Ebadi, M., White, R.J., and Swanson, S., 1984, The presence and functions of zinc binding proteins in developing and mature brains, in: Neurobiology of Zinc (Part A), C.J. Frederickson, G.A. Howell, and E.J. Kasarkis, eds., Alan R. Liss, Inc., New York, p. 39.

    Google Scholar 

  • Ebadi, M., 1985, The role of zinc in growth and development, J. Nutr. Growth and Cancer, 2: 181.

    CAS  Google Scholar 

  • Ebadi, M., and Wallwork, J.C., 1985, Zinc binding proteins (ligands) in brains of severely zinc deficient rats, Biol, Trace Element Res., 7: 129.

    Article  CAS  Google Scholar 

  • Ebadi, M., Babin, D., and Swanson, S., 1985, Amino acid analysis and HPLC characterization of the isoforms of the metallothionein-like protein in rat brain, Trans. Soc. Neurosci., 15: 155.

    Google Scholar 

  • Eckhert, C.D., 1981, Elevated body zinc in rats with inherited dystrophy, J. Heredity, 72: 130.

    CAS  Google Scholar 

  • Fujii, T., 1954,. Presence of zinc in nucleoli and its possible role in mitosis, Nature, 174: 1108.

    Google Scholar 

  • Goldberg, H.J., and Sheehy, E.M., 1982, Fifth day fits: an acute zinc deficiency syndrome?, Arch. Dis. Childh., 57: 632.

    Article  Google Scholar 

  • Golub, M.S., Gershwin, M.E., and Vijayan, V.K., 1983, Passive avoidance performance of mice fed marginally or severely zinc deficient diets during post-embryonic brain development, Physiol. Behay., 30: 409.

    Article  CAS  Google Scholar 

  • Gordon, E.F., 1984, Behavioral correlates of experimental zinc deficiency, in: The Neurobiology of Zinc. Part B. Deficiency, Toxicity, and Pathology, C.J. Frederickson, G.A. Howell, and E.J. Kasarskis, eds., Alan R. Liss, Inc., New York, p. 77.

    Google Scholar 

  • Govitrapong, P., Hama, Y., Awad, A., and Ebadi, M., 1985, The inhibitory action of zinc and cadmium on D2 dopamine and glutamate receptors in bovine pineal gland, Trans. Endocr. Soc., 67: 1272.

    Google Scholar 

  • Halas, E.S., and Sandstead, H.H., 1975, Some effects of prenatal zinc deficiency on behavior of the adult rat, Pediatric. Res., 9: 94.

    Google Scholar 

  • Halas, E.S., Hanlon, M.J., and Sandstead, H.H., 1975, Intrauterine nutri-tion and aggression, Nature, 257: 221.

    Article  PubMed  CAS  Google Scholar 

  • Halas, E.S., Reynolds, G., Rowe, M., Heinrich, M., and Pirc, M., 1977, Comparison of frequency, intensity and duration of aggressive responses in rats, Physiol. Behay., 18: 975.

    Article  CAS  Google Scholar 

  • Halas, E.S., Heinrich, M.D., and Sandstead, H.H., 1979, Long term memory deficits in adult rats due to postnatal malnutrition, Physiol. Behay., 22: 991.

    Article  CAS  Google Scholar 

  • Halas, E.S., Eberhardt, J.J., Diers, M.A., and Sandstead, H.H., 1983, Learning and memory impairment in adult rats due to severe zinc deficiency during lactation, Physiol, Behay., 30: 371.

    Article  CAS  Google Scholar 

  • Halas, E.S., and Kawamoto, J.C., 1984, Correlated behavioral and hippocampal effects due to perinatal zinc deprivation, in: The Neurobiology of Zinc. Part B. Deficiency, Toxicity, and Pathology, C.J. Frederickson, G.A. Howell, and E.J. Kasarskis, eds., Alan R. Liss, Inc., New York, p. 91.

    Google Scholar 

  • Haug, F.-M.S., 1967, Electron microscopical localization of the zinc in hippocampal mossy fiber synapses by a modified sulphide silver procedure, Histochemistry, 8: 355.

    Article  PubMed  CAS  Google Scholar 

  • Heilmaier, H.E., Summer, K.H., 1985, Metallothionein content and zinc status in various tissues of rats treated with iodoacetic acid and zinc, Arch. Toxicpl., 56: 247.

    Article  CAS  Google Scholar 

  • Hershey, C.O., Hershey, L.A., Varnes, A., Vibhakar, S.D., Lavin, P., and Strain, W.H., 1983, Cerebrospinal fluid trace element content in dementia:clinical, radiologie, and pathologic correlations, Neurology, 33: 1350.

    Article  PubMed  CAS  Google Scholar 

  • Hesketh, J.E., 1983, Zinc binding to tubulin, Int. J. Biochem., 15: 743.

    Article  PubMed  CAS  Google Scholar 

  • Hurley, L.S., Gowan, J., and Swenerton, H., 1971, Teratogenic effectsof short-term and transitory zinc deficiency in rats, Teratology, 4: 199.

    Article  CAS  Google Scholar 

  • Hurley, L.S., 1981, Teratogenic aspects of manganese, zinc, and copper nutrition, Physiol. Rev., 61: 249.

    PubMed  CAS  Google Scholar 

  • Itoh, M., and Ebadi, M., 1982a, Zinc binding proteins in rat brain and their interactions with glutamic acid decarboxylase, Fed. Proc., 41: 9736.

    Google Scholar 

  • Itoh, M., and Ebadi, M., 1982b, The selective inhibition of hippocampal glutamic acid decarboxylase in zinc-induced epileptic seizures, Neuro-chem. Res., 7: 1287.

    Google Scholar 

  • Itoh, M., Ebadi, M., and Swanson, S., 1983, The presence of zinc binding proteins in brain, J. Neurochem., 41: 823.

    Article  PubMed  CAS  Google Scholar 

  • Judd, A.M., MacLeod, R.M., and Login, I.S., 1984, Zinc acutely, selectively and reversibly inhibits pituitary prolactin secretion, Brain Res., 294: 190.

    Article  PubMed  CAS  Google Scholar 

  • Kagi, J.H., and Vallee, B.L., 1960, Metallothionein: a cadmium- and zinc containing protein from equine renal cortex, J. Biol, Chem., 235: 3460.

    CAS  Google Scholar 

  • Kagi, J.H., and Nordberg, M., 1979, Metallothionein, Birkhäuser Verlag,Basel, Switzerland.

    Google Scholar 

  • Karin, M., and Richards, R.I., 1982, Human metallothionein genes-primary structure of the metallothionein-II gene and a related processed gene, Nature, 299: 797.

    Article  PubMed  CAS  Google Scholar 

  • Kimura, K. and Kumura, J., 1965, Polarigraphic determination of zinc levels in the brains of schizophrenics and control patients, Proc. Jap. Acad., 41: 943.

    CAS  Google Scholar 

  • Klauser, S., Kagi, J.H.R., and Wilson, K.J., 1983, Characterization of isoprotein patterns in tissue extracts and isolated samples of metallothioneins by reverse-phase high pressure liquid chromatography, Biochem. J., 209: 71.

    PubMed  CAS  Google Scholar 

  • Klee, M.R., and Lieflander, M., 1965, Ãœber das Vorkommen von Zink und Carbonat-hydro-lyase im Kaninchenhirn, Hoppe Sevler’s Z, Phvsiol. Chem., 341:143.

    Article  CAS  Google Scholar 

  • Lee, C.-M., Javitch, J.A., and Snyder, S.H., 1983, 3H-Substance P binding to salivary gland membranes regulation by guanyl nucleotides and divalent cations, Mol. Pharmacol., 23: 563.

    PubMed  CAS  Google Scholar 

  • Lindskog, S., 1983, Carbonic anhydrase, in: Zinc Enzymes, T.G. Spiro, ed., John Wiley and Sons, New York, p. 79.

    Google Scholar 

  • Login, I.S., Thorner, M.O., and MacLeod, R.M., 1983, Zinc may have a physiological role in regulating pituitary prolactin secretion, Neuroendocrinology, 37: 317.

    Article  PubMed  CAS  Google Scholar 

  • Lucier, G.W., and Hook, G.E., 1984, Metallothionein and cadmium nephrotoxicity, in: Environmental Health Perspectives, 54, U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  • Majumdar, S.K., Shaw, G.K., and Thomson, A.D., 1983, Serum zinc, magnesium and calcium status in the Wernicke-Korsakoff syndrome, Drug and Alcohol Dependence, 12: 403.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno, S., Ogawa, N., and Mori, A., 1983, Differential effects of some transition metal cations on the binding of p-carboline-3-carboxylate and diazepam, Neurochem. Res., 8: 873.

    Article  PubMed  CAS  Google Scholar 

  • Mozha, I.B., 1974, Levels of various trace elements in the blood of patients with various types of retinal pathology, Vestn. Oftalmol., 5: 59.

    Google Scholar 

  • Nair, V., and Bau, D., 1971, Studies on the functional significance of carbonic anhydrase in central nervous system, Brain Res., 31: 185.

    Article  PubMed  CAS  Google Scholar 

  • Neve, J., Sinet, P.M., Molle, L., and Nicole, A., 1983, Selenium, zinc and copper in Down’s syndrome (trisomy 21): blood levels and relations with glutathione peroxidase and superoxide dismutase, Clin. Chim.Acta, 133: 209.

    Article  PubMed  CAS  Google Scholar 

  • Nielson, K.B., and Winge, D.R., 1983, Order of metal binding in metallothionein, J. Biol. Chem., 258: 13063.

    PubMed  CAS  Google Scholar 

  • O’Dell, B.L., 1974, Role of zinc in protein synthesis, in: Clinical Applications of Zinc Metabolism, W.J. Pories, W.H. Strain, J.M. Hsu, and R.L. Woosley, eds., Charles C. Thomas, Springfield, p. 5.

    Google Scholar 

  • Olton, D.S., Collison, C., and Werz, M., 1977, Spatial memory and radial arm maze performance of rats, Learning and Motivation, 8: 289.

    Article  Google Scholar 

  • Otton, D.S., Walker, J.A., and Gage, F.H., 1978, Hippocampal connection and spatial discrimination, Brain Res., 139: 295.

    Article  Google Scholar 

  • Palm, R., and Hallmans, G., 1982, Zinc and copper metabolism in phenytoin therapy, Epilepsia, 23: 453.

    Article  PubMed  CAS  Google Scholar 

  • Palm, R., Hallmans, G., and Sjoström, R., 1982, Zinc concentrations in normal and pathological cerebrospinal fluid, Acta Neurol, Scand., 90: 184.

    Google Scholar 

  • Papavasiliou, P.S., Kutt, H., Miller, S.T., Rosat, V., Wang, Y.Y., and Aronson, R.B., 1979, Seizure disorders and trace metals: manganese tissue levels in treated epileptics, Neurology, 29: 1466.

    Article  CAS  Google Scholar 

  • Pei, Y., Zhao, D., Huang, J., and Cao, L., 1983, Zinc-induced seizures: a new experimental model of epilepsy, Epilepsia, 24: 169.

    Article  PubMed  CAS  Google Scholar 

  • Peters, D.P., 1978, Effects of prenatal nutritional deficiency on affiliation and aggression in rats, Phvsiol. Behay., 20: 359.

    Article  CAS  Google Scholar 

  • Peters, D.P., 1979, Effects of prenatal nutrition on learning and motivation in rats, Physiol. Behay., 22: 1067.

    Article  CAS  Google Scholar 

  • Pfeiffer, C.C., and LaMola, S., 1983, Zinc and manganese in the schizophrenia, J. Orthomolec. Psych., 12: 215.

    Google Scholar 

  • Pippenger, C.E., Garlock, C., Fernandez, F., Slavin, W., and Iannarone, J., 1980, Effect of antiepileptic drugs on manganese, zinc and copper concentrations in whole blood, RBC, and plasma of epileptic, in: Advances in Epileptologv: XIth Epilepsy International Symposium, R. Canger,ed., Raven Press, New York, p. 435

    Google Scholar 

  • Prasad, A.S., 1976, Deficiency of zinc in man and its toxicity, in: Trace Elements in Human Health and Disease, A.S. Prasad, ed., Academic Press, New York, p. 1.

    Google Scholar 

  • Prasad, A.S., 1979, Clinical, biochemical and pharmacological role of zinc, Ann. Rev. Pharmacol. Toxicol., 20: 393.

    Google Scholar 

  • Pryor, D.S., Don, N., and Macourt, D.C., 1981, Fifth day fits: a syndrome of neonatal convulsions, Arch. Dis. Childh., 56: 753.

    Article  PubMed  CAS  Google Scholar 

  • Pulido, P., Kagi, J.H.R., and Vallee, B.L., 1966, Isolation and some properties of human metallothionein, Biochemistry, 5: 1768.

    Article  PubMed  CAS  Google Scholar 

  • Record, I.R., Dreosti, I.E., Tulsi, R.S., Fraser, R.S., Fraser, F.J., Buckley, R.A., and Manuel, S.J., 1982, Postnatal accumulation of zinc by the rat hippocampus, Biol. Trace Element Res., 4: 279.

    Article  CAS  Google Scholar 

  • Rieder, H.P., Schoettli, G., and Seiler, H., 1983, Trace elements in whole blood of multiple sclerosis, Eur. Neurol., 22: 85.

    Article  PubMed  CAS  Google Scholar 

  • Sandstead, H.H., Fosmire, G.J., Halas, E.S., Jacob, R.A., Strobel., D.S., and Marks, E.O., 1977, Zinc deficiency: effects on brain and behavior of infants, Am. J. Clin. Nutr., 31: 844.

    Google Scholar 

  • Sandstead, H.H., Strobel, D.A., Logan, G.M., Marks, E.O., and Jacob, R.A., 1978, Zinc deficiency in pregnant rhesus monkeys: effects on behavior of infants, Am. J. Clin, Nutr., 31: 844.

    PubMed  CAS  Google Scholar 

  • Shapcott, D., Giguere, R., and Lemieux, B., 1984, Zinc and taurine in Friedreich’s ataxia, Can, J. Neurol. Sci., 11: 623.

    CAS  Google Scholar 

  • Sato, S.M., Frazier, J.M., and Goldberg, A.M., 1984a, The distribution and binding of zinc in the hippocampus,J. Neurosci., 4: 1662.

    PubMed  CAS  Google Scholar 

  • Sato, S.M., Frazier, J.M., and Goldberg, A.M., 1984b, A kinetic study of the in vivo incorporation of Zn into the rat hippocampus, J. Neurosci., 4: 1671.

    PubMed  CAS  Google Scholar 

  • Slevin, J.T., and Kasarkis, E.J., 1985, Effects of zinc on markers of glutamate and aspartate neurotransmission in rat hippocampus, Brain Res., 334: 281.

    Article  PubMed  CAS  Google Scholar 

  • Smart, T.G., and Constanti, A., 1982, A novel effect of zinc on the lobster muscle GABA receptor, Proc. Rov. Soc. Lond., B215: 327.

    Article  CAS  Google Scholar 

  • Stengaard-Pedersen, K., 1982, Inhibition of enkephalin binding to opiate receptors by zinc ions: possible physiological importance in the brain, Acta Pharmacol. Toxicol., 50: 213.

    Article  CAS  Google Scholar 

  • Stengaard-Pedersen, K., Larson, L.-I., Fredens, K., and Rehfeld, J.F.,1984, Modulation of cholecystokinin concentrations in the rat hippocampus by chelation of heavy metals, Proc. Natl. Acad. Sci. USA, 81: 5876.

    Article  PubMed  CAS  Google Scholar 

  • Sypert, G.W., 1982, Metallic salts and epileptogenesis, in: Physiology and Pharmacology of Epileptogenic Phenomena, M.R. Klee, H.D. Lux, and E.J. Speckman, eds., Raven Press, New York, p. 81.

    Google Scholar 

  • Underwood, E.J., 1977, Zinc, in: Trace Elements in Human and Animal Nutrition, E.J. Underwood, ed., Academic Press, New York, p. 196.

    Google Scholar 

  • Vallee, B.L., 1983, Zinc in biology and biochemistry, in: Zinc Enzymes, Vol. 5, T.G. Spiro, ed., Metal Ion in Biology Series, John Wiley and Sons, New York, p. 3.

    Google Scholar 

  • Webb, M., and Cain, K., 1982, Functions of metallothionein, Biochem. Pharmacol., 31: 137.

    Article  PubMed  CAS  Google Scholar 

  • Wright, D.M., 1984, Zinc: effect and interaction with other cations in the cortex of the rat, Brain Res., 311: 343.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C.-T., Lee, J.-N., Shen, W.W., and Lee, S.-L., 1984, Serum zinc, copper, and ceruloplasmin levels in male alcoholics, Biol. Psych., 19: 1333.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Ebadi, M., Hama, Y. (1986). Zinc-Binding Proteins in the Brain. In: Schwarcz, R., Ben-Ari, Y. (eds) Excitatory Amino Acids and Epilepsy. Advances in Experimental Medicine and Biology, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7971-3_43

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7971-3_43

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7973-7

  • Online ISBN: 978-1-4684-7971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics