Skip to main content

The Hyperexcited Brain: Glutamic Acid Release and Failure of Inhibition

  • Chapter
Excitatory Amino Acids and Epilepsy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 203))

Abstract

There no longer exists much doubt that epilepsy is associated with a rather specific set of biochemical alterations (Delgado-Escueta and Greenberg, 1984). Nevertheless, considerable controversy still surrounds the significance of these alterations, touching on several areas of importance. Perhaps the most crucial issue to be resolved is the question whether the biochemical changes found are in consequence of the cerebral dysfunction or whether, indeed, such alterations contribute directly to the cause of the condition. Traditionally, a diagnosis of epilepsy and its classification to type is most commonly confirmed by electroencephalographic evidence. However, the initial reason for arriving at such a diagnosis is usually occasioned only after an individual has complained of periodic and unpredictable episodes of uncontrollable movements, sensations, vegetative or emotional ‘storms’, or other inappropriate outward expressions of autonomous cerebral activity. Hence, an abnormal or epileptiform EEG activity per se, whether focal or diffuse, in most instances is no cause for a positive and clear diagnosis of epilepsy (Hockaday and Whitty, 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andermann, E., 1982, Multifactorial inheritance of generalized and focal epilepsy, in: Genetic Basis of the Epilepsies, V. E. Anderson, W.A. Hauser, J.K. Penry, and C.F. Sing, eds., Raven Press, New York, p. 351.

    Google Scholar 

  • Bazemore, A.W., Elliott, K.A.C., and Florey, E., 1957, Isolation of Factor I, J. Neurochem., 1: 334.

    Article  CAS  Google Scholar 

  • Baxter, C.F., and Roberts, E., 1961, Elevation of gamma-aminobutyric acid in brain: selective inhibition of gamma-aminobutyric-alpha-ketoglutaric acid transaminase, J. Biol. Chem., 236: 3287.

    Google Scholar 

  • Bedwani, J.R., Songra, A.K., and Trueman, C.J., 19§4, Influence of aminooxyacetic acid on potassium-evoked release of I H]gamma-aminobutyric acid from slices of rat cerebral cortex, Neurochem. Res., 9: 1101.

    Google Scholar 

  • Benjamin, A.M., and Quastel, J.H., 1974, Fate of L-glutamate in the brain, J. Neurochem., 23: 457.

    Article  CAS  Google Scholar 

  • Benveniste, H., Dreier, J., Schousboe, A., and Diemer, N.H., 1984, Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis, J. Neurochem., 43: 1369.

    Article  PubMed  CAS  Google Scholar 

  • Bosley, T.M., Woodhams, P.L., Gordon, R.D., and Balâzs, R., 1983, Effects of anoxia on the stimulated release of amino acid neurotransmitters in the cerebellum in vitro, J. Neurochem., 40: 189.

    Article  PubMed  CAS  Google Scholar 

  • Brière, R., Sherwin, A.L., Robitaille, Y., Olivier, A., Quesney, L.F., and Reader, T.A., 1986, Alpha-1 adrenoceptors are decreased in human epileptic foci, Ann Neurol., 19: 26.

    Article  PubMed  Google Scholar 

  • Buu, N.T., and van Gelder, N.M., 1974, Biological actions in vivo and in vitro of two gamma-aminobutyric acid (GABA) analogues: beta-chloro GABA and beta-phenyl GABA, Br. J. Pharmacol., 52: 401.

    Google Scholar 

  • Chauvel, P., Trottier, S., Nassif, S., and Dedek, J., 1982, Une altération des afférences noradrénergiques est-elle en cause dans les épilepsies focales?, Rev. E.E.G, Neurophvsiol., 12: 1.

    Google Scholar 

  • Chesney, R.W., Gusowski, N., Dabbagh, S., and Padilla, M., 1985, Renal cortex taurine concentrations regulate renal adaptive response to altered dietary intake of sulfur amino acids, in: Taurine: Biological Aspects and Clinical Perspectives, S.S. Oja, L. Ahtee, P. Kontro and M.K. Paasonen, eds., Alan R. Liss, Inc., New York, p. 33.

    Google Scholar 

  • Cloninger, C.R., Rice, J., Reich, T., and MoGurfin, P., 1982, Genetic analysis of seizure disorders as multidimensional threshold characters, in: Genetic Basis of the Epilepsies, V.E. Anderson, W.A. Hauser, J.K. Penry, and C.R. Sing, eds., Raven Press, New York, p. 291.

    Google Scholar 

  • Delgado-Escueta, A.V., and Greenberg, D., 1984, The search for epilepsies ideal for clinical and molecular genetic studies, Ann. Neurol., 16 ( Suppl. ): S1.

    Google Scholar 

  • Denner, L.A., and Wu, J.-Y., 1985, Two forms of rat brain glutamic acid decarboxylase differ in their dependence on free pyridoxal phosphate, J. Neurochem., 44: 957.

    Article  PubMed  CAS  Google Scholar 

  • Dodd, P.R., Bradford, H.F., Abdul-Ghani, A.S., Cox, D.W.G., and CoutinhoNetto, J., 1980, Release of amino acids from chronic epileptic and sub-epileptic foci in vivo, Brain Res., 193: 505.

    Article  PubMed  CAS  Google Scholar 

  • Durelli, L., Mutani, R., Quattrocolo, G., Delsedime, M., Buffa, C., Fassio, F., Valentino, C., and Fumero, S., 1977, Relationships between electroencephalographic pattern and biochemical picture of the cobalt epileptogenic lesion after cortical superfusion with taurine, EXD. Neurol., 54: 489.

    CAS  Google Scholar 

  • Durelli, L, and Mutani, R., 1983, The current status of taurine in epilepsy, Clin. Neurooharmacol., 6: 37.

    Google Scholar 

  • Elliott, K.A.C., and Japser, H.H., 1959, Gamma-aminobutyric acid, Phvsiol. Rev., 39: 383.

    Google Scholar 

  • Elliott, K.A.C., and van Gelder, N.M., 1960, The state of Factor I in rat brain: the effects of metabolic conditions and drugs, J. Phvsiol. 153: 423.

    CAS  Google Scholar 

  • Elliott, K.A.C., 1965, Gamma-aminobutyric acid and other inhibitory substances, Brit. Med. Bull., 21: 70.

    Google Scholar 

  • Engel, J., Ackermann, R., Caldecott-Hazard, S., and Kuhl, D., 1981, Epileptic activation of antagonistic systems may explain parodoxical features of experimental and human epilepsy: a review and hypothesis, in: Kindling 2, J. Wada, ed., Raven Press, New York, p. 193.

    Google Scholar 

  • Fischel, S.V., and Medzihradsky, F., 1985, Assessment of membrane permeability in primary cultures of neurons and glia in response to osmotic perturbation, J. Neurosci. Res., 13: 369.

    Google Scholar 

  • Fromm, G.H., Terrence, C.F., and Chattha, A.S., 1985, Differential effect of antiepileptic and non-epileptic drugs on the reticular formation, Life Sci., 35: 2665.

    Article  Google Scholar 

  • Gastaut, H., and Zifkin, B.G., 1986, Benign epilepsy of childhood with occipital spike and wave complexes: correlations with other primary epilepsies and with migraine, in: Migraine and Epilepsy, F. Andermann, and E. Lugaresi, eds., Butterworth, Boston, in press.

    Google Scholar 

  • Goldensohn, E.S., 1969, Experimental seizure mechanisms, in: Basic Mechanisms of the EDileDsies, H.H. Jasper, A.A. Ward, and A. Pope, eds., Little, Brown and Co., Boston, p. 289.

    Google Scholar 

  • Hiramatsu, M., 1983, Brain 5-hydroxytryptamine level, metabolism, and binding in El mice, Neurochem. Res., 8: 1163.

    Google Scholar 

  • Hirsch, J.A., and Gibson, G.E., 1984, Selective alteration of neurotransmitter release by low oxygen in vitro, Neurochem. Res., 9: 1039.

    Google Scholar 

  • Hockaday, J.M., and Whitty, C.W.M., 1969, Factors determining the electroencephalogram in migraine: a study of 560 patients, according to clinical type of migraine, Brain, 92: 769.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, W.F., and Johnston, D., 1984, Frequency-dependent noradrenergic modulation of long-term potentiation in the hippocampus, Science, 226:350. Hunt, A.D., Stokes, J., McCrory, W.W., and Stroud, H.H., 1954, Pyridoxine dependency, Pediatrics, 13: 140.

    Google Scholar 

  • Huxtable, R.J., Laird, H., Lippincott, S.E., and Walson, P., 1983, Epilepsy and the concentrations of plasma amino acids in humans, Neurochem. Int., 5: 125.

    Google Scholar 

  • Iadarola, I., Raines, A., and Gale, K., 1979, Differential effects of n-dipropylacetate and amino-oxyacetic acid on gamma-aminobutyric acid levels in discrete areas of the rat brain, J. Neurochem., 33: 1119.

    Google Scholar 

  • Iwama, K., and Jasper, H.H., 1957, The action of gamma-aminobutyric acid upon cortical electrical activity in the cat, J. Phvsiol., 138: 365.

    CAS  Google Scholar 

  • Jasper, H.H., Khan, R.T., and Elliott, K.A.C., 1965, Amino acids released from the cerebral cortex in relation to its state of activation, Science, 147: 1448.

    Article  PubMed  CAS  Google Scholar 

  • Johnston, D., and Brown, T.H., 1984, The synaptic nature of the paroxysmal depolarizing shift in hippocampal neurons, Ann. Neurol., 16 (Suppl.): S65.

    Article  PubMed  Google Scholar 

  • Killam, K.F., and Bain, J.A., 1957, Convulsant hydrazides 1: in vitro and in vivo inhibition of vitamin B6 enzymes by convulsant hydrazides, J. Pharmacol. Exp. Therap., 119: 255.

    Google Scholar 

  • Koyama, I., and Jasper, H., 1977, Amino acid content of chronic undercut cortex of the cat in relation to electrical afterdischarge: comparison with cobalt epileptogenic lesions, Can. J. Physiol. Pharmacol., 55: 523.

    Google Scholar 

  • Kravitz, E.A., Potter, D.D., and van Gelder, N.M., 1962, Gamma-aminobutyric acid distribution in the lobster nervous system: CNS, peripheral nerves and isolated motor and inhibitory axons, Biochem. Biophvs. Res. Commun., 7: 231.

    Google Scholar 

  • Krespan, B., Berl, S., and Nicklas, W.J., 1982, Alterations in neuronal-glial metabolism of glutamate by the neurotoxin kainic acid, J. Neurochem., 38: 509.

    Article  PubMed  CAS  Google Scholar 

  • Krnjevid, K., 1983, GABA-mediated inhibitory mechanisms in relation to epileptic discharges, in: Basic Mechanisms of Neuronal Hvperexcitability, H.H. Jasper, and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 249.

    Google Scholar 

  • Kuffler, S.W., and Edwards, C., 1958, Mechanism of gamma aminobutyric acid ( GABA) action and its relation to synaptic inhibition, J. Neurophvsiol., 21: 586.

    Google Scholar 

  • Kuriyama, K., Roberts, E., and Rubinstein, M.K., 1966, Elevation of gammaaminobutyric acid in brain with amino-oxyacetic acid and susceptibility to convulsive seizures in mice: a quantitative reevaluation, Biochem. Pharmacol., 15: 221.

    Google Scholar 

  • Lance, J.W., 1981, Pathophysiology of the migraine syndrome, in: Current Concepts in Migraine, Ayerst Lab. Publ., p. 5.

    Google Scholar 

  • Lauritzen, M., Trojaborg, W., and Olesen, J., 1981, EEG during attacks of common and classical migraine, Cephalogia, 1: 63.

    Article  CAS  Google Scholar 

  • Lauritzen, M., 1986, Cerebral blood flow in migraine and spreading depression, in: Migraine and Epilepsy, F. Andermann, and E. Lugaresi, eds., Butterworth, in press.

    Google Scholar 

  • Leao, A.A.P., 1944, Pial circulation and spreading depression of activity in the cerebral cortex, J. Neurophysiol., 7: 391.

    Google Scholar 

  • Lehmann, A., Hagberg, H., Nyström, B., Sandberg, M., and Hamberger, A., 1985, In vivo regulation of extracellular taurine and other neuroactive amino acids in the rabbit hippocampus, in: Taurine: Biological Actions and Clinical Perspectives, S.S. Oja, L. Ahtee, P. Kontro, and M.K. Paasonen, eds., Alan R. Liss, Inc., New York, 289–311.

    Google Scholar 

  • Lejhon, H.B., and Jackson, S.G., 1969, Regulation of mitochondrial glutamic dehydrogenase by divalent metals, nucleotides, and alpha-ketoglutarate, J. Biol. Chem., 244: 5346.

    Google Scholar 

  • Madtes, P., 1984, Chloride ions preferentially mask high-affinity GABA binding sites, J. Neurochem., 43: 1434.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, M., Abe, M., Hoshino, M., and Sakurai, T., 1979, Gamma-aminobutyric acid in subcellular fractions of mouse brain and its relation to convulsions, Biochem. Pharmacol., 28: 2785.

    Google Scholar 

  • Mihâly, A., and Bozoky, B., 1984, Immunohistochemical localization of extravasated serum albumin in the hippocampus of human subjects with partial and generalized epilepsies and epileptiform convulsions, Acta Neuropathol., 65: 25.

    Article  PubMed  Google Scholar 

  • Mirski, M.A., and Ferrendelli, J.A., 1984, Interruption of the mammillo- thalamic tract prevents seizures in guinea pigs, Science, 226: 72.

    Article  PubMed  CAS  Google Scholar 

  • Monaco, F., Mutani, R., Durelli, L., and Delsedime, M., 1975, Free amino acids in serum of patients with epilepsy: significant increase in taurine, Epilepsia, 16: 245.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, C., 1983, Regulation of the ion microenvironment and neuronal excitability, In: Basic Mechanisms of Neuronal Hvpgrexcitability, H.H. Jasper, and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 185.

    Google Scholar 

  • Nicklas, W.J., Berl, S., and Clarke, D.D., 1975, Relationship between amino acid and catecholamine metabolism in brain, in: Metabolic Comoartmentation and Neurotransmission: Relation to Brain Structure and Func- tion, S. Berl, D.D. Clarke, and D. Schneider, eds., Plenum Press, New York, p. 497.

    Google Scholar 

  • Norris, D.K., Murphy, R.A., and Chung, S.H., 1985, Alterations of amino acid metabolism in epileptogenic mice by elevation of brain pyridoxal phosphate, J. Neurochem,, 44: 1403.

    Article  PubMed  CAS  Google Scholar 

  • Oja, S.S., Korpi, E.R., Halopainen, I., and Kontro, P., 1985, Mechanisms of stimulated taurine release from nervous tissue, in: Taurine; Biological Actions and Clinical Perspectives, S.S. Oja, L. Ahteen, P. Kontro, and M.K. Paasonen, eds., Alan R. Liss, Inc., New York, p. 237.

    Google Scholar 

  • Orrego, F., Miran, R., and Soldate, C., 1976, Electrically induced release of labelled taurine, alpha- and beta-alanine, glycine, glutamate and other amino acids from rat neocortical slices in vitro, Neuroscience, 1: 325.

    Article  PubMed  CAS  Google Scholar 

  • Pappius, H.M., and Elliott, K.A.C., 1956, Water distribution in incubated slices of brain and other tissue, Can. J. Phvsiol. Pharmacol., 34: 1007.

    Google Scholar 

  • Porter, T.G., and Martin, D.L., 1984, Evidence for feedback regulation of glutamate decarboxylase by gamma-aminobutyric acid, J. Neurochem., 43: 1464.

    Article  PubMed  CAS  Google Scholar 

  • Prince, D.A., and Connors, B.W., 1984, Mechanisms of epileptogenesis in cortical structures, Ann. Neurol., 16 (Suppl.): S59.

    Article  PubMed  Google Scholar 

  • Puil, E., 1981, S-glutamate: its interactions with spinal neurons, Brain Res. Rev., 3: 229.

    Google Scholar 

  • Reulen, H.J., Graham, R., Fenske, A., Tsuyumu, M., and Klatzo, I., 1976, The role of tissue pressure and bulk flow in the formation and resolution of cold-induced edema, in: Dynamics of Brain Edema, H.M. Pappius, and W. Feindel, eds., Springer-Verlag, Berlin, p. 103.

    Chapter  Google Scholar 

  • Ribak, C.E., Bradburne, R.M., and Harris, A.B., 1982, A preferential loss of GABAergic, symmetric synapses in epileptic foci: a quantitative ultrastructural analysis of monkey neocortex, J. Neurol Sci., 2: 1725.

    CAS  Google Scholar 

  • Scheibel, A.B., Paul, L., and Fried, I., 1983, Some structural substrates of the epileptic states, i31: Basic Mechanisms of Neuronal Hvoerexcitabilitv, H.H. Jasper and N.M. van Gelder, eds., Alan R. Liss, Inc.,New York, p. 109.

    Google Scholar 

  • Selby, G., and Lance, J.W., 1960, Observations on 500 cases of migraineand allied vascular headache, J. Neurol. Neurosurw., Psvchiat., 23: 23.

    Google Scholar 

  • Sherwin, A., Quesney, F., Gautheir, S., Olivier, A., Robitaille, Y., McQuaid, P., Harvey, C., and van Gelder, N.M., 1984, Enzyme changesin actively spiking areas of human epileptic cerebral cortex, Neurology, 34: 927.

    Article  PubMed  CAS  Google Scholar 

  • Sherwin, A.L., and van Gelder, N.M., 1986, Amino acid and catecholamine markers of metabolic abnormalities in human focal epilepsy, in: Basic Mechanisms of the Eoileosies, A.V. Delgado-Escueta, A.A. Ward, D.M. Woodbury, and A.J. Porter, eds., Raven Press, New York, in press.

    Google Scholar 

  • Sihra, T.S., Scott, I.G., and Nichols, D.G., 1984, Ionophore A23187, vera-pamil, protonophores, and veratridine influence the release of gammaaminobutyric acid from synaptosomes by modulation of the plasma membrane potential rather than the cytosolic calcium, J. Neurochem., 43: 1624.

    Article  PubMed  CAS  Google Scholar 

  • Takano, T., Kaneko, Y., Kumashiro, H., Sugai, N., and Oosaki, T., 1984, Kainate seizure and carbonic anhydrase ( CAH) reaction in the hippocampal structures, Neurosciences(Kobe), 10: 309.

    Google Scholar 

  • Traub, R.D., and Wong, R.K.S., 1982, Cellular mechanisms of neuronal synchronization in epilepsy, Science, 216: 745.

    Article  PubMed  CAS  Google Scholar 

  • van Gelder, N.M., Sherwin, A.L., Sacks, C., and Andermann, F., 1975, Biochemical observations following administration of taurine to patients with epilepsy, Brain Res., 94: 297.

    Article  PubMed  Google Scholar 

  • van Gelder, N.M., 1978, Taurine, the compartmentalized metabolism of glutamic acid, and the epilepsies, Can. J. Physiol. Pharmacol., 56: 362.

    Google Scholar 

  • van Gelder, N.M., and Drujan, B.D., 1980, Alterations in the compartmentalized metabolism of glutamic acid with changed cerebral conditions, Brain Res., 200: 443.

    Article  PubMed  Google Scholar 

  • van Gelder, N.M., Janjua, N.A., Metrakos, K., MacGibbon, B., and Metrakos, J.D., 1980, Plasma amino acids in 3/sec spike-and-wave epilepsy, Neurochem. Res., 5: 659.

    Google Scholar 

  • van Gelder, N.M., 1981, The role of taurine and glutamic acid in the epileptic process: a genetic predisposition, Rev. Pure Appl. Pharmacol. Sci., 2: 293.

    Google Scholar 

  • van Gelder, N.M., 1982, Changed taurine-glutamic acid content and altered nervous tissue cytoarchitecture, Adv. Expt. Med. Biol., 139: 239.

    Google Scholar 

  • van Gelder, N.M., 1983a, Metabolic interactions between neurons and astro-glia: glutamine synthetase, carbonic anhydrase and water balance,in: Basic Mechanisms of Neuronal Excitability, H.H. Jasper, and N.M. van Gelder, eds., Alan R. Liss, Inc., New York, p. 5.

    Google Scholar 

  • van Gelder, N.M., 1983b, A central mechanism of action for taurine: osmoregulation, bivalent cations and excitation threshold, Neurochem. Res., 8:687.

    Google Scholar 

  • van Gelder, N.M., Siatitsas, I., Ménini, C., and Gloor, P., 1983, Feline generalized penicillin epilepsy: changes of glutamic acid and taurine parallel the progressive increase in excitability of the cortex, Epilepsia, 24: 200.

    Article  PubMed  Google Scholar 

  • Van Harreveld, A., and Ochs, S., 1957, Electrical and vascular concomitants of spreading depression, Am. J. Physiol., 189: 159.

    Google Scholar 

  • Van Harreveld, A., and Fifkova, E., 1971, Effects of glutamate and other amino acids on the retina, J. Neurochem., 18: 2145.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

van Gelder, N.M. (1986). The Hyperexcited Brain: Glutamic Acid Release and Failure of Inhibition. In: Schwarcz, R., Ben-Ari, Y. (eds) Excitatory Amino Acids and Epilepsy. Advances in Experimental Medicine and Biology, vol 203. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7971-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7971-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7973-7

  • Online ISBN: 978-1-4684-7971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics