Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 16))

Abstract

One of the last enquiries inspired by Theodosius Dobzhansky is entitled, “How far do flies fly?”.1 The paper refers to several field studies where a labelled strain of Drosophila was released and its dispersal measured by recapture of labelled flies on subsequent days. If the dispersal is simply due to random movements of the flies, then it should be analogous to the dispersal of small particles performing Brownian movements. Expected, in this case, is a normal distribution of the flies such that the increase of their mean distance from the release point is proportional to the square root of the time elapsed since the release. The expected time dependence of the dispersal seems to hold, more or less, for colonies of D. pseudoobscura, and the diffusion model may be considered as a reasonable first approximation of the locomotor behavior. However, the expected profile of the distribution has not been verified. Conspicuously more flies were recaptured both near the release point and at the outer periphery of the field. This discrepancy was explained by the tendency of Drosophila either to remain in a favorable habitat, or to cover great distances in search of such a habitat. The observation suggests that the control of locomotion can be adapted by the fly to different situations and requirements. The locomotor behavior of D. melanogaster has been extensively studied in laboratory experiments. Most of the results obtained so far refer to optomotor responses which enable the fly to maintain a given course and altitude over extended periods of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.R. Powell and T. Dobzhansky, How far do flies fly?, Amer. Scientist 64: 179 (1976).

    CAS  Google Scholar 

  2. K.G. Götz, Optische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila, Kybernetik 2: 77 (1964).

    Article  PubMed  Google Scholar 

  3. K.G. Götz, Flight control in Drosophila by visual perception of motion, Kybernetik 4: 199 (1968).

    Article  PubMed  Google Scholar 

  4. K.G. Götz and H. Wenking, Visual control of locomotion in the walking fruitfly Drosophila, J. Comp. Physiol. 85: 235 (1973).

    Article  Google Scholar 

  5. K.G. Götz, B. Hengstenberg, and R. Biesinger, Optomotor control of wing beat and body posture in Drosophila, Biol. Cybern. 35: 101 (1979).

    Article  Google Scholar 

  6. E. Buchner, Elementary movement detectors in an insect visual system, Biol. Cybern. 24: 85 (1976).

    Article  Google Scholar 

  7. E. Buchner, K.G. Götz, and C. Straub, Elementary detectors for vertical movement in the visual system of Drosophila. Biol. Cybern. 31: 235 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. K.G. Götz, and E. Buchner, Evidence for one-way movement detection in the visual system of Drosophila, Biol. Cybern. 31: 243 (1978).

    Article  PubMed  Google Scholar 

  9. J. Blondeau (in preparation).

    Google Scholar 

  10. M. Heisenberg and K.G. Götz, The use of mutations for the partial degradation of vision in Drosophila melanogaster, J. Comp. Physiol. 98: 217 (1975).

    Article  Google Scholar 

  11. M. Heisenberg and E. Buchner, The role of retinula cell types in visual behavior of Drosophila melanogaster, J. Comp. Physiol. 117: 127 (1977).

    Article  Google Scholar 

  12. M. Heisenberg, R. Wonneberger, and R. Wolf, Optomotor-blind H31 a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. 124: 287 (1978).

    Article  Google Scholar 

  13. M. Heisenberg and R. Wolf, On the fine structure of yaw torque in visual flight orientation of Drosophila melanogaster, J. Comp. Physiol. 130: 113 (1979).

    Article  Google Scholar 

  14. M. Heisenberg, Genetic approach to a visual system, in: “Handbook of Sensory Physiology,Vol. VII/6A Comparative Physiology and Evolution of Vision in Invertebrates., H. Autrum, ed., Berlin-Heidelberg-New York, Springer (1979).

    Google Scholar 

  15. G. Heide, Proprioceptorische Beeinflussung der Impulsmusterbildung im neuromotorischen System fliegender Dipteren, Verh. Dtsch. Zool. Ges. 1978, p. 256 (1978).

    Google Scholar 

  16. G. Heide and K.G. Götz, (in preparation).

    Google Scholar 

  17. K.G. Götz, The optomotor equilibrium of the Drosophila navigation system, J. Comp. Physiol. 99: 187 (1975).

    Article  Google Scholar 

  18. W. Reichardt and T. Poggio, Visual control of orientation behavior in the fly. I. A quantitative analysis, Quart. Rev. Biophys. 9: 311 (1976).

    Article  CAS  Google Scholar 

  19. T. Poggio and W. Reichardt, Visual control of orientation behavior in the fly. II. Towards the underlying neural interactions, Quart. Rev. Biophys. 9: 377 (1976).

    Article  CAS  Google Scholar 

  20. W. Reichardt, Functional characterization of neural interactions through an analysis of behavior, in:“The Neurosciences” Fourth Study Program, F.O. Schmitt and F.G. Worden, eds., The MIT Press, Cambridge, Mass. (1979).

    Google Scholar 

  21. K.G. Götz, Hirnforschung am Navigationssystem der Fliegen, Naturwissenschaften 62: 468 (1975).

    Article  Google Scholar 

  22. K.G. Götz, Sehen, Abbilden, Erkennen - Verhaltensforschung am visuellen System der Fruchtfliege Drosophila, Verh. Schweiz. Naturf. Ges. 1975, p. 10 (1975).

    Google Scholar 

  23. E. Horn and R. Wehner, The mechanism of visual pattern fixation in the walking fly Drosophila melanogaster, J. Comp. Physiol. 101: 39 (1975).

    Article  Google Scholar 

  24. E. Horn, The mechanism of object fixation and its relation to spontaneous pattern preferences in Drosophila melanogaster, Biol. Cybern. 31: 145 (1978).

    Article  PubMed  CAS  Google Scholar 

  25. H. Bülthoff, (in preparation).

    Google Scholar 

  26. H. Bülthoff, K.G. Götz, and M. Herre, (in preparation).

    Google Scholar 

  27. T.S. Collett and M.F. Land, Visual control of flight behavior in the hoverfly, Syritta pipiens L., J. Comp. Physiol. 99: 1 (1975).

    Article  Google Scholar 

  28. K.F. Fischbach, Simultaneous and successive color contrast expressed in “slow phototactic”behavior of walking Drosophila melanogaster, J. Comp. Physiol. 130: 161 (1979).

    Article  Google Scholar 

  29. R. Willmund, Light induced modification of phototactic behavior of Drosophila melanogaster, II. Physiological aspects, J. Comp. Physiol. 129: 35 (1979).

    Article  Google Scholar 

  30. B. Gebhardt, R. Wolf, R. Gademann, and M. Heisenberg, Polarization sensitivity of course control in Drosophila melanogaster, (in preparation).

    Google Scholar 

  31. K.G. Götz, Spontaneous preferences of visual objects in Drosophila, Drosophila Inform. Serv. 46: 62 (1971).

    Google Scholar 

  32. T.S. Collett and M.F. Land, How hoverflies compute interception courses, J. Comp. Physiol. 125: 191 (1978).

    Article  Google Scholar 

  33. R. Cook, The courtship tracking of Drosophila melanogaster, Biol. Cybern. 34: 91 (1979).

    Article  Google Scholar 

  34. R. Cook, The extent of visual control in the courtship tracking of D. melanogaster, Biol. Cybern. (in press).

    Google Scholar 

  35. J.C. Hall, Control of male reproductive behavior by the central nervous system of Drosophila: Dissectionof a courtship pathway by genetic mosaics, Genetics 92: 437 (1979).

    PubMed  CAS  Google Scholar 

  36. W. Reichardt and T. Poggio, Figure-ground discrimination by relative movement in the visual system of the fly, I. Experimental results, Biol. Cybern. 35: 81 (1979).

    Article  Google Scholar 

  37. H. Bülthoff and K.G. Götz, Analogous motion illusion in man and fly, Nature 278: 636 (1979).

    Article  PubMed  Google Scholar 

  38. E. Buchner, S. Buchner and,R. Hengstenberg, 2-Deoxy-D-glucose maps movement-specific nervous activity in the second, visual ganglion of Drosophila, Science 205: 687 (1979).

    Article  PubMed  CAS  Google Scholar 

  39. R.J. Greenspan, J.A. Finn, and J.C. Hall, Acetylcholinesterase mutants in Drosophilaand their effects on the structure and and function of the central nervous system, J. Comp. Neurol. (in press).

    Google Scholar 

  40. R. Hengstenberg, The effect of pattern movement on the impulse activity of the cervical connective of Drosophila melanogaster, Z. Naturforsch. 28c: 593 (1973).

    CAS  Google Scholar 

  41. A.W. Ewing, The neuromuscular basis of courtship song in Drosophila: the role of the direct and axillary wing muscles, J. Comp. Physiol. 130: 87 (1979).

    Article  Google Scholar 

  42. K. Hausen, Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala, Z. Naturforsch. 31c: 629 (1976).

    Google Scholar 

  43. R. Hengstenberg, Spike response of “non-spiking” visual inter-neurone, Nature 270: 338 (1977).

    Article  PubMed  CAS  Google Scholar 

  44. H.E. Eckert and L.G. Bishop, Anatomical and physiological properties of the vertical cells in the third optic ganglion of Phaenicia sericata, J. Comp. Physiol. 126: 57 (1978).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Götz, K.G. (1980). Visual Guidance in Drosophila . In: Siddiqi, O., Babu, P., Hall, L.M., Hall, J.C. (eds) Development and Neurobiology of Drosophila . Basic Life Sciences, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7968-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7968-3_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7970-6

  • Online ISBN: 978-1-4684-7968-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics