Skip to main content

Sensory Pathways in Drosophila Central Nervous System

  • Chapter

Part of the book series: Basic Life Sciences ((BLSC,volume 16))

Summary

We have analyzed the central projections of identified sensory neurons in wild type Drosophila and in the homeotic mutant bithorax postbithorax The results indicate that: (i) the choice of a given pathway in the central nervous system of the adult depends on the developmental history of the neuron, namely on the type of sense organ of which it is part, and on the developmental compartment to which it belongs; (ii) the establishment of the projection involves the specific recognition of a preexisting “trail” in the central nervous system. Here we examine and rule out alternative explanations of our results, and conclude that the directed growth of an axon relies at least in part on a physical guidance mechanism to which specificity is conferred by programming the growing axon to recognize the appropriate guide.

We speculate that the guides are preexisting, specifically marked nerve fibers and that the basic pattern of connectivity is largely laid down early during neurogenesis, at a time when a standard set of connections is relatively easy to specify.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  1. S. Benzer, Genetic dissection of behavior, Sci. Amer. 229(6): 24 (1973).

    Google Scholar 

  2. Y.N. Jan, L.Y. Jan and M.J. Dennis, Two mutations of synaptic transmission in Drosophila, Proc. R. Soc. Lond. B 198: 87 (1977).

    Article  CAS  Google Scholar 

  3. Y.N. Jan and L.Y. Jan, Genetic dissection of short term and long term facilitation at the Drosophila neuromuscular junction, Proc. Natl. Acad. Sci. USA 75: 515 (1978).

    CAS  Google Scholar 

  4. O. Siddiqi and S. Benzer, Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA 73: 3253 (1976).

    Article  CAS  Google Scholar 

  5. W.G. Quinn’and J.L. Gould, Nerves and genes, Nature 278: 19 (1979).

    Article  Google Scholar 

  6. E.B. Lewis, A gene complex controlling segmentation in Drosophila Nature 276: 565 (1978).

    Article  Google Scholar 

  7. A.Garcia-Bellido, P. Ripoll and G. Morata, Developmental compartmentalization of the wing disc of Drosophila, Nature New Biol., 245: 251 (1973).

    Google Scholar 

  8. A. Garcia-Bellido and M.P. Capdevila, Initiation and maintenance of gene activity in a developmental pathway of Drosophila, in: The Clonal Basis of Development“, S. Sobtenly and I.M. Sussex, eds., Academic Press, New York, pp. 3–21 (1979).

    Google Scholar 

  9. W.J. Gehring and R. Nöthiger, The imaginal discs of Drosophila, in: “Developmental Systems: Insects”, Vol. 2, S.J. Counce and C.H. Waddington, eds., Academic Press, New York, pp. 211–290, (1973).

    Google Scholar 

  10. G. Morata and P.A. Lawrence, Homeotic genes, compartments and cell determination in Drosophila, Nature 265: 211 (1977).

    Article  PubMed  CAS  Google Scholar 

  11. I.I. Deak, Demonstration of sensory neurons in the ectopic cuticle of spineless-aristapedia, a homoeotic mutant of Drosophila, Nature 260: 252 (1976).

    Article  PubMed  CAS  Google Scholar 

  12. R.F. Stocker, J.S. Edwards, J. Palka and G. Schubiger, Projections of sensory neurons from a homoeotic mutant appendage, Antennapedia, in Drosophila melanogaster, Develop. Biol. 52:210 (1976).

    Google Scholar 

  13. J. Palka, P.A. Lawrence and H.S. Hart, Neural projection patterns from homoeotic tissue of Drosophila studied in bithorax mutants and mosaics, Develop. Biol. 69: 549 (1979).

    Google Scholar 

  14. A. Ghysen, Sensory neurons recognize defined pathways in Drosophila central nervous system, Nature 274: 869 (1978).

    Article  Google Scholar 

  15. H. Anderson and J. Bacon, Developmental determination of neuronal projection patterns from wind sensitive hairs in the locus, Schistocerca gregaria, Develop. Biol. 72: 364 (1979).

    Google Scholar 

  16. A.Ghysen, The projection of sensory neurons in the central nervous system of Drosophila: Choice of the appropriate pathway, Develop. Biol. (in press) (1980).

    Google Scholar 

  17. Reviewed in: C.M. Bate, Development of sensory systems in arthropods, in: “Handbook of Sensory Physiology” Vol. IX, M. Jacobson ed., pp. 1–53 (1978).

    Google Scholar 

  18. G. Morata and P.A. Lawrence, Control of compartment development by the engrailed gene of Drosophila’, Nature 255: 614 (1975).

    Article  PubMed  CAS  Google Scholar 

  19. A. Garcia-Bellido, Pattern reconstruction by dissociated imaginal disc cells of Drosophila melanogaster, Develop. Biol. 14: 278. (1966).

    Google Scholar 

  20. V.B. Wigglesworth, The origin of sensory neurons in an insect, Quart. J. Microsc. Sci. 94: 93 (1953).

    Google Scholar 

  21. C.M. Bate, Pioneer neurons in an insect embryo, Nature 260: 54 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. J.R. Sanes and J.G. Hildebrand, Nerves in the antenna of pupal Manduca sexta, Wilhelm Roux Arch. 178: 71 (1975).

    Article  Google Scholar 

  23. A. Ghysen and I.I. Deak, Experimental analysis of sensory nerve pathways in Drosophila, Wilhelm Roux Arch. 184: 273 (1978).

    Article  Google Scholar 

  24. M.J. Katz and R.J. Lasek, Substrate pathways which guide growing axons in Xenopus embryos, J. Comp. Neurol. 183: 817 (1979).

    CAS  Google Scholar 

  25. R.P. Sharma and V.L. Chopra, Effect of the wingless mutation on wing and haltere development in Drosophila melanogaster, Develop. Biol. 48: 461 (1976).

    Google Scholar 

  26. M.E. Power, The thoracico-abdominal nervous system of an adult insect, Drosophila melanogaster, J. Comp. Neurol. 88: 347 (1948).

    CAS  Google Scholar 

References for Appendix Only

  1. R.P. Sharma, wingless, a new mutant in Drosophila melanogaster, Droso. Inf. Serv. 50: 134 (1973).

    Google Scholar 

  2. R.P. Sharma and V.L. Chopra, Effect of wingless mutation on wing and haltere development in Drosophila melanogaster, Develop. Biol. 28: 461.

    Google Scholar 

  3. P.J. Bryant, Pattern formation in the imaginal wing disc of Drosophila melanogaster: fate map, regeneration and duplication, J. exp. Zool. 183: 49 (1975).

    Article  Google Scholar 

  4. J.H. Postlethwait, Pattern formation in the wing and haltere imaginal discs after irradiation of Drosophila melanogaster first instar larvae, Wilhelm Roux’ Arch. 178: 29 (1975).

    Google Scholar 

  5. P. Babu, Early developmental subdivisions of the wing disc in Drosophila,Molec. Gen. Genet. 151: 289 (1977).

    Google Scholar 

  6. G. Morata and P.A. Lawrence, The development of wingless, a homeotic mutation of Drosophila, Develop. Biol. 56: 227 (1977).

    Google Scholar 

  7. A. Garcia-Bellido, P. Ripoll and G. Morata, Developmental compartmentalization of the wing disc of Drosophila, Nature New Biol. 245: 251 (1973).

    PubMed  CAS  Google Scholar 

  8. A. Garcia-Bellido and P. Santamaria, Developmental analysis of the wing disc in the mutant engrailed of Drosophila melanogaster, Genetics 72: 87 (1972).

    PubMed  CAS  Google Scholar 

  9. G. Morata and P.A. Lawrence, Control of compartment development by the engrailed gene of Drosophila, Nature 255: 614 (1975).

    Article  PubMed  CAS  Google Scholar 

  10. I.I. Deak, Thoracic duplications in the mutant wingless of Drosophila and their effect on muscles and nerves, Develop. Biol. 66: 422 (1978).

    Google Scholar 

  11. A. Ghysen and I.I. Deak, Experimental analysis of sensory nerve pathways in Drosophila, Wilhelm Roux Arch. 184: 273 (1978).

    Article  Google Scholar 

  12. C.A. Reinhardt, N.M. Hodgkin and P.J. Bryant, Wound healing in the imaginal discs of Drosophila, I. Scanning electron microscopy of normal and healing wing discs, Develop. Biol. 60: 238 (1977).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ghysen, A., Janson, R. (1980). Sensory Pathways in Drosophila Central Nervous System. In: Siddiqi, O., Babu, P., Hall, L.M., Hall, J.C. (eds) Development and Neurobiology of Drosophila . Basic Life Sciences, vol 16. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7968-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7968-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7970-6

  • Online ISBN: 978-1-4684-7968-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics