Skip to main content

Metabolism of Sulfidopeptide Leukotrienes

  • Conference paper
Book cover Prostanoids and Drugs

Part of the book series: NATO ASI Series ((NSSA,volume 177))

  • 33 Accesses

Abstract

Until recently there has been very little known about the ultimate metabolitc fate of the sulfidopeptide leukotrienes. A basic principle of the pharmacology of mediator substances requires that mechanisms exist for biological inactivation of these very potent molecules. One such mechanism might be simple uptake of leukotrienes by the cells which make or respond to them. Studies showing that LTC4, produced in the isolated perfused lung in response to the calcium ionophore A23187, was largely retained by the lung over a span of 10 minutes, and that very little conversion to LTD4/LTE4 took place, suggesting the possibility that a reuptake mechanism for LTC4 in the lung existed (1). Other eicosanoids (LTB4, 6-keto-PGF1, thromboxane B2 and PGE2) were largely released into the perfusate. It is also possible that LTC4 was retained through binding to tissue proteins with high affinity and not taken up into cells. Since direct experiments have now shown that leukotrienes are not stored in cells from which they are released, and, while the retention of LTC4 by the isolated perfused rat lung has not been fully explained, simple reuptake of LTC4 in the lung seems unlikely. At present it is thought that metabolic biotransformation is the primary mechanism of inactivation of the leukotrienes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.Y. Westcott, T.J. McDonnell, P. Bostwick, and N.F. Voelkel, Eicosanoid production in isolated perfused lungs stimulated with calcium ionophore A23187. Am. Rev. Respir. Dis.,in press.

    Google Scholar 

  2. R.K. Root, J. Metcalf, N. Oshino, and B. Chance, 1975, H202 release from human granulocytes during phagocytosis I. Documentation, quantitation, and some regulating factors. J. Clin. Invest., 55: 945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R.A. Clark and S. Szot, 1982, Chemotactic factor inactivation by stimulated human eosinophils mediated by myeloperoxidase-catalyzed methionine oxidation. J. Immunol., 128: 1507.

    PubMed  CAS  Google Scholar 

  4. C.W. Lee, R.A. Lewis, E.J. Corey, A. Barton, H. Oh, A.I. Tauber, K.F. Austen, 1982, Oxidative inactivation of leukotriene C4 by stimulated human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA, 79: 4166.

    Article  CAS  PubMed  Google Scholar 

  5. E.J. Goetzl, 1982, The conversion of leukotriene C4 to isomers of leukotriene B4 by human eosinophil peroxidase. Biochem. Biophys. Res. Commun., 106:2’70.

    Google Scholar 

  6. W.R. Henderson and S.J. Klebanoff, 1983, Leukotriene B4, C4, D4, and E4 inactivation by hydroxyl radicals. Biochem. Biophys. Res. Commun., 110: 266.

    Article  CAS  PubMed  Google Scholar 

  7. M.A. Veill, W.R. Henderson, and S.J. Klebanoff, 1985, Oxidative degredation of leukotriene C4 by human monocytes and monocyte-derived macrophage. J. Exp. Med., 162: 1634.

    Article  Google Scholar 

  8. T.W. Harper, J.Y. Westcott, N.F. Voelkel, and R.C. Murphy, 1984, Metabolism of LTB4 and LTC4 in the isolated perfused rat lung. J. Biol. Chem., 259: 14437.

    PubMed  CAS  Google Scholar 

  9. G. Hansson, J.A. Lindgren, S.E. Dahlen, P. Hedqvist, and B. Samuelsson, 1981, Identification and biological activity of novel w -oxidized metabolites of leukotriene B4 from human leukocytes. FEBS Lett., 130: 107.

    Article  CAS  PubMed  Google Scholar 

  10. S.J., Feinmark, J.A. Lindgren, H.E. Claesson, C. Malmsten, B. Samuelsson, 1981, Stimulation of human leukocyte degranulation by leukotriene B4 and its w-oxidized metabolites. FEBS Lett., 136: 141.

    Article  Google Scholar 

  11. T.W. Harper, M.J. Garrity, and R.C. Murphy, 1986, Metabolism of leukotriene B4 in isolated rat hepatocytes. Identification of a novel 18-carboxy-dinorLTB4 metabolite. J. Biol. Chem., 261: 5414.

    PubMed  CAS  Google Scholar 

  12. M.C. Ramano, R.D. Eckardt, P.E. Bender, T.B. Leonard, K.M. Straub, and J.F. Newton, 1987, Biochemical characterization of hepatic microsomal leukotriene B4 hydroxylases. J. Biol. Chem., 262: 1590.

    Google Scholar 

  13. R.J. Soberman, J.P. Sutyak, R.T. Okita, D.F. Wendelbgrn, L.J. Roberts, and K.F. Austen, 1988, The identification and formation of 20-aldehyde leukotriene B4. J. Biol. Chem., 263: 7996.

    PubMed  CAS  Google Scholar 

  14. W.E. Serafin, J.A. Oates, W.C. Hubbard, 1984, Metabolism of leukotriene B4 in the monkey. Identification of the principal nonvolatile metabolite in urine. Prostaglandins, 27: 899.

    Article  CAS  PubMed  Google Scholar 

  15. L.-E. Appelgren and S. Hammarstrom, 1982, Distribution and metabolism of 3H-labeled leukotriene C3 in the mouse. J. Biol. Chem., 257: 531.

    PubMed  CAS  Google Scholar 

  16. K. Ormstad, N. Uehara, S. Orrenius, L. Orning, and S. Hammarstrom, 1982, Uptake and metabolism of leukotriene C3 by isolated rat organs and cells. Biochem. Biophys. REs. Commun. 104: 1434.

    Article  CAS  PubMed  Google Scholar 

  17. N. Uehara, K. Ormstad, L. Orning, and S. Hammarstrom, 1983, Characteristics of the uptake of cysteine-containing leukotrienes by isolated hepatocytes. Biochem. Biophys. Acta, 732: 69.

    Article  CAS  PubMed  Google Scholar 

  18. G. Weckbecker and D.O.R. Keppler, 1986, Leukotriene C4 metabolism by hepatoma cells deficient in the uptake of cysteinyl leukotrienes. Eur. J. Biochem., 154: 559.

    Article  CAS  PubMed  Google Scholar 

  19. L. Orning, E. Norin, B. Gustafsson, and S. Hammarstrom, 1986, In vivo metabolism of leukotriene C4 in germ-free and conventional rats. J. Biol.Chem.,261:766.

    PubMed  CAS  Google Scholar 

  20. W. Hagmann, C. Denzlinger, S. Rapp, G. Weckbecker, and D. Keppler, 1986, Identification of the major engoenous leukotriene metabolite in the bile of rats as N-acetyl leukotriene E4. Prostaglandins, 31: 239.

    Article  CAS  PubMed  Google Scholar 

  21. M. Huber and D. Keppler, 1987, Inhibition of leukotriene D4 catabolism by Dpenicillamine. Eur. J. Biochem., 167: 73.

    Article  CAS  PubMed  Google Scholar 

  22. R.C. Murphy, R. Mathews, and W. Pickett, W., Leukotrienes and thromboxanes: Metabolites of essential fatty acids with significant untoward pharmacological properties, in: “Nutritional Factors: Modulating Effects of Metabolic Processes,” E.G. Bassett, ed., Raven Press, N.Y. (1981).

    Google Scholar 

  23. M. Soderstrom, S. Hammarstrom, and B. Mannervick, 1988, Leukotriene C synthase in mouse mastocytoma cells. An enzyme distinct from cytosolic and microsomal glutathione transferases. Biochem. J., 250: 713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. J. Caldwell, Conjugation reactions of nitrogen centers, in: “Metabolic Basis of Detoxication,” W.B. Jakoby, J.R. Bend, and J. Caldwell, eds., Academic Press, New York (1982).

    Google Scholar 

  25. K. Bernstrom and S. Hammarstrom, 1986, Metabolism of leukotriene E4 by rat tissues: Formation of N-acetyl leukotriene E4. Arch. Biochem. Biophys., 244: 486.

    Article  CAS  PubMed  Google Scholar 

  26. C. Denzlinger, A. Guhlmann, W. Hagmann, P.H. Scheuber, F. Scheyer, D. Wilker, D.K. Hammer, and D. Keppler, 1986, Cysteinyl leukotrienes undergo enterohepatic circulation. Prostag. Leukotr. Med., 21: 321.

    Article  CAS  Google Scholar 

  27. M. Humber, A. Guhlmann, P.L.M. Jansen, and D. Keppler, 1987, Hereditory defect of hepatobiliary cysteinyl leukotriene elimination in mutant rats with defective hepatic anion excretion. Hepalology, 7: 224.

    Article  Google Scholar 

  28. J.Y. Westcott, T.J. McDonnel, and N.F. Voelkel, 1988, Alveolar transfer and metabolism of eicosaniods in the rat

    Google Scholar 

  29. C. Denzlinger, A. Guhlmann, P.H Keppler, 1986, Metabolism and monkey. J. Biol. Chem., 261: 15601.

    PubMed  CAS  Google Scholar 

  30. L. Orning, L. Kaijser, and S. leukotriene C4 in maw Urinary Res. Commun.,130:214.

    Google Scholar 

  31. S.R. Wagle and W.R. Ingebretsen, Isolation, purification, and metabolic characteristics of rat liver hepatocytes, in: “Methods in Enzymology,” J.M. Lowenstein, ed., Academic Press, New York (1975).

    Google Scholar 

  32. D.O. Stene and R.C. Murphy, 1988, Metabolism of leukotriene E4 in isolated rat hepatocytes: Identification of beta-oxidation products of sulfidopeptide leukotrienes. J. Biol. Chem. 263: 2773.

    PubMed  CAS  Google Scholar 

  33. R.C. Murphy and D.O. Stene, 1988, Oxidative metabolism of leukotriene E4 by rat hepatocytes. Ann. NY Acad. Sci., 524: 35.

    Article  CAS  PubMed  Google Scholar 

  34. H.P. Koch, 1949, Absorption spectra and structure of organic sulfur compounds. Part I. Unsaturated sulphides. J. Chem. Soc., 387.

    Google Scholar 

  35. W.-H. Kunau and P. Dommes, 1978, Degradation of unsaturated fatty acids. Identification of intemediates in the degradation of cis-4-decenoyl-CoA by extracts of beff liver mitochondria. Eur. J. Biochem., 91: 533.

    Article  CAS  PubMed  Google Scholar 

  36. C.-H. Chu, L. Kushner, D. Cuebas, and H. Schulz, 1984, The activity of 3hydroxyacyl-CoA epemerase is insufficient to account for the rate of linoleate oxidation in rat heart mitochondria. Evidence for a modified pathway of linoleate degradation. Biochem. Biophys. Res. Commun., 118: 162.

    Article  CAS  PubMed  Google Scholar 

  37. J.A. Zirrolli, A. Fradin, J. Maclouf, and R.C. Murphy, 1988, Analysis of LTB4 and 20-hydroxy-LTB4 in whole blood challenged with zymosan. Proc. Ann. Conf. Mass Spectrom. 36:, in press.

    Google Scholar 

  38. V. Diczfalusy, S.E.H. Alerson, and J.I. Pedersen, 1987, Chain-shortening of prostaglandin F2a by rat liver peroxisomes. Biochem. Biophys. Res. Commun., 144: 1206.

    Article  CAS  PubMed  Google Scholar 

  39. P. Perrin, J. Zirrolli, D. Stene, J.P. Lellouche, J.P. Beaucourt, and R.C. Murphy, In vivo formation of fl-oxidized metabolites of leukotriene E4 in the rat. Prostaglandins,submitted.

    Google Scholar 

  40. H.A. Ball and D. Keppler, 1987, u-oxidation products of leukotriene E4 in bile and urine of the monkey. Biochem. Biophys. Res. Commun., 148: 664.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this paper

Cite this paper

Stene, D.O., Murphy, R.C. (1989). Metabolism of Sulfidopeptide Leukotrienes. In: Samuelsson, B., Berti, F., Folco, G.C., Velo, G.P. (eds) Prostanoids and Drugs. NATO ASI Series, vol 177. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7938-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7938-6_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7940-9

  • Online ISBN: 978-1-4684-7938-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics