Skip to main content

Laser-Induced Resonance Enhanced Multiphoton Ionization in Supersonic Beams

  • Chapter
Methods and Mechanisms for Producing Ions from Large Molecules

Part of the book series: NATO ASI Series ((NSSB,volume 269))

  • 122 Accesses

Abstract

Supersonic jet expansions have served as a means of producing ultracold molecules for spectroscopy[1] and as an injection technique for mass spectrometry[2]. This method has been limited largely to molecules which are sufficiently volatile to be heated into the gas phase where they can be mixed with a light carrier gas such as Ar. The focus of recent work in our laboratory though, has been to extend the supersonic jet technique to nonvolatile and thermally labile molecules[3–8]. A number of techniques have been developed for entrainaient of nonvolatiles into jet expansions including pulsed laser desorption[3–8], thermospray[7,9,10], direction liquid injection[11], and supercritical fluid injection[12–14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. H. Levy, L. Wharton and R. E. Smalley, in: “Chemical and Biochemical Applications of Lasers”, Academic, New York (1977), Vol. 2, p. 1

    Google Scholar 

  2. . D. H. Levy, L. Wharton and R. E. Smalley, Acc. Chem. Res. 10, (1977) 139.

    Google Scholar 

  3. D. M. Lubman, Anal. Chem. 31A, (1986) 59.

    Google Scholar 

  4. R. Tembreull and D. M. Lubman, Anal. Chem. 59, (1987) 1003

    Article  Google Scholar 

  5. R. Tembreull and D. M. Lubman, Anal. Chem. 59, (1987) 1082

    Article  Google Scholar 

  6. R. Tembreull and D. M. Lubman, Appl. Spectrosc. 41, (1987) 431.

    Article  ADS  Google Scholar 

  7. L. Li and D. M. Lubman, Appl. Spectrosc. 42, (1988) 411

    Article  ADS  Google Scholar 

  8. L. Li and D. M. Lubman, Appl. Spectrosc. 42, (1988) 418

    Article  ADS  Google Scholar 

  9. L. Li and D. M. Lubman, Anal. Chem. 60, (1988) 1409

    Article  Google Scholar 

  10. L. Li and D. M. Lubman, Rev. Sci. Instrum. 59, (1988) 557.

    Article  ADS  Google Scholar 

  11. F. Engelke, J. H. Hahn, W. Henke and R. N. Zare, Anal. Chem. 59, (1987) 909

    Article  Google Scholar 

  12. J. H. Hahn, R. Zenobi and R. N. Zare, J. Am. Chem. Soc. 109, (1987) 2842.

    Article  Google Scholar 

  13. J. Grotemeyer, U. Boesl, K. Walter and E. W. Schlag, Org. Mass Spectrom. 21, (1986) 595

    Article  Google Scholar 

  14. J. Grotemeyer, U. Boesl, K. Walter and E. W. Schlag, Org. Mass Spectrom. 21 (1986) 645

    Article  Google Scholar 

  15. J. Grotemeyer, U. Boesl, K. Walter and E. W. Schlag, Org. Mass Spectrom. 22, (1987) 758.

    Article  Google Scholar 

  16. Y. D. Park, T. R. Rizzo, L. A. Peteanu and D. H. Levy, J. Chem. Phys. 84, (1986) 6539

    Article  ADS  Google Scholar 

  17. T. R. Rizzo, Y. D. Park, L. Peteanu and D. H. Levy, J. Chem. Phys. 83, (1985) 4819.

    Article  ADS  Google Scholar 

  18. J. R. Cable, M. J. Tubergen and D. H. Levy, J. Am. Chem. Soc. 109, (1987) 6198.

    Article  Google Scholar 

  19. C. R. Blakely and M. L. Vestal, Anal. Chem. 55, (1983) 750.

    Article  Google Scholar 

  20. M. L. Vestal, Anal. Chem. 56, (1984) 2590.

    Article  Google Scholar 

  21. T. R. Covey, E. D. Lee, A. P. Bruins and J. D. Henion, Anal. Chem. 58, (1986) 1451A.

    Article  Google Scholar 

  22. C. H. Sin, H. M. Pang, D. M. Lubman and J. Zorn, Anal. Chem. 58, (1986) 487

    Article  Google Scholar 

  23. C. H. Sin, H. M. Pang, D. M. Lubman and J. Zorn, Anal. Chem. 58, (1986) 1581.

    Article  Google Scholar 

  24. H. Fukuoka, T. Imasaka and N. Ishibashi, Anal. Chem. 58, (1986) 375.

    Article  Google Scholar 

  25. B. D. Anderson and M. V. Johnston, Appl. Spectrosc. 41, (1987) 1358.

    Article  ADS  Google Scholar 

  26. M. A. Posthumus, P. G. Kistemaker, H. L. C. Meuzelaar and M. C. Ten Noever de Brauw, Anal. Chem. 50, (1978) 985.

    Article  Google Scholar 

  27. R. J. Conzenius and J. M. Capellan, Int. J. Mass Spectrom. Ion Phys. 34, (1980) 197.

    Article  Google Scholar 

  28. M. Barber, R. S. Bordoli, R. D. Sedgwick and A. N. Tyler, J. Chem. Soc. Chem. Commun. (1981) 325.

    Google Scholar 

  29. M. Barber, R. S. Bordoli, G. J. Elliot, R. D. Sedgwick and A. N. Tyler, Anal. Chem. 54, (1982) 645A.

    Article  Google Scholar 

  30. D. M. Lubman and R. M. Jordan, Rev. Sci. Instrum. 56, (1985) 373.

    Article  ADS  Google Scholar 

  31. D. M. Lubman, C. T. Rettner and R. N. Zare, J. Phys. Chem. 86, (1982) 1129.

    Article  Google Scholar 

  32. Beam profile information courtesy of Spectra-Technology, Seattle, Washington.

    Google Scholar 

  33. R. Tembreull and D. M. Lubman, Anal. Chem. 56, (1984) 1962.

    Article  Google Scholar 

  34. A. Burger, “A Guide to the Chemical Basis of Drug Design”, John Wiley & Sons, New York (1983).

    Google Scholar 

  35. in: “Lasers and Mass Spectrometry”, ed. D. M. Lubman, Oxford University Press, New York (1990) Ch. 16.

    Google Scholar 

  36. L. Li and D. M. Lubman, Appl. Spec. 43, (1989) 543.

    Article  ADS  Google Scholar 

  37. L. Li and D. M. Lubman, Rapid Commun. Mass Spec. 3, (1989) 12.

    Article  Google Scholar 

  38. U. Boesl, H. J. Neusser, and E. W. Schlag, Chem. Phys. 55 (1981) 193.

    Article  Google Scholar 

  39. D. M. Lubman and M. N. Kronick, Anal Chem. 54, (1982) 660.

    Article  Google Scholar 

  40. L. Li and D. M. Lubman, Anal Chem. 60, (1988) 2591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Lubman, D.M. (1991). Laser-Induced Resonance Enhanced Multiphoton Ionization in Supersonic Beams. In: Standing, K.G., Ens, W. (eds) Methods and Mechanisms for Producing Ions from Large Molecules. NATO ASI Series, vol 269. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7926-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7926-3_36

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7928-7

  • Online ISBN: 978-1-4684-7926-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics