Molecular Mechanisms of Membrane Fusion and Applications of Membrane Fusion Techniques

  • Jan Wilschut
  • Janny Scholma
  • Toon Stegmann
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 238)


The functioning of all eukaryotic cells is critically dependent on a variety of membrane fusion phenomena. For example, membrane fusion plays a key role not only in such cell-cell fusion events as fertilization and myogenesis, but also in intracellular transport processes, involving specific fusion events between membrane vesicles derived from various cellular compartments. This vesicular fusion appears to be a general trafficking mechanism in the sorting of cellular components during membrane biogenesis and the assembly of cell organelles. Vesicular fusion also plays a central role in the internalization of compounds from the extracellular environment through endocytosis, and their subsequent intracellular processing, and in the exocytotic secretion of products synthesized by the cell. Finally, membrane fusion is a crucial step in the infectious entry of enveloped viruses into cells.


Influenza Virus Membrane Fusion Phospholipid Vesicle Erythrocyte Ghost Fusion Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahkong, Q.F., Fisher, D., Tampion, W. and Lucy, J.A. (1975) Mechanisms of cell fusion, Nature 253, 194–195.PubMedGoogle Scholar
  2. Baker, P.F. and Knight, D.E. (1984) Calcium control of exocytosis in bovine adrenal medullary cells, Trends Neurosci 7, 120–126.Google Scholar
  3. Bental, M., Lelkes, P.I., Scholma, J., Hoekstra, D. and Wilschut, J. (1984) Ca2+- independent, protein-mediated fusion of chromaffin granule ghosts with liposomes, Biochim. Biophys. Acta 774, 296–300.PubMedGoogle Scholar
  4. Bentz, J., Duzgunes, D. and Nir, S. (1983) Kinetics of divalent cation-induced fusion of phosphatidylserine vesicles: Correlation between fusogenic capacities and binding affinities, Biochemistry 22, 3320–3330.Google Scholar
  5. Bentz, J. and Duzgunes, N. (1985) Fusogenic capacities of divalent cations and the effect of liposome size, Biochemistry 24, 5436–5443.PubMedGoogle Scholar
  6. Bentz, J., Ellens H., Lai, M-Z. and Szoka, F.C. (1985) On the correlation between HII phase and contact-induced destabilization of membranes, Proc. Natl. Acad. Sci. USA 82, 5742–5745.PubMedGoogle Scholar
  7. Boni, L.T., Hah, J.S., Hui, S.W., Mukherjee, P., Ho, J.T. and Jung, C.Y. (1984) Aggregation and fusion of unilamellar vesicles by poly(ethylene glycol), Biochim. Biophys. Acta 775, 409–418.PubMedGoogle Scholar
  8. Burgoyne, R.D. (1984) Mechanisms of secretion from adrenal chromaffin cells, Biochim. Biophys. Acta 779, 201–216.PubMedGoogle Scholar
  9. Chandler, D.E. and Heuser, J.E. (1980) Arrest of membrane fusion events in mast cells by quick freezing, J. Cell Biol. 86, 666–674.PubMedGoogle Scholar
  10. Collins, D. and Huang, L. (1987) Delivery of Diphteria toxin A fragment to the cytoplasm of toxin-resistant cells by pH-sensistive immunoliposomes, Cancer Res. 47, 735–739.PubMedGoogle Scholar
  11. Doms, R.W., Helenius, A. and White, A. (1985) Membrane fusion activity of the influenza virus hemagglutinin: The low pH-induced conformational change, J. Biol. Chem. 260, 2973–2981.PubMedGoogle Scholar
  12. Doxsey, S.J., Sambrook, J., Helenius, A. and White, J. (1985) An efficient method for introducing macromolecules into cells, J. Cell Biol. 100, 704–714.Google Scholar
  13. Driessen, A.J.M., Hoekstra, D., Scherphof, G., Kalicharan, R.D. and Wilschut, J. (1985a) Low pH-induced fusion of liposomes with membrane vesicles derived from Bacillus subtilis. J. Biol. Chem. 260, 10880–10887.PubMedGoogle Scholar
  14. Driessen, A.J.M., Hellingwerf, K.J. and Konings, W.N. (1985b) Light-induced generation of a proton-motive force and Ca2+ transport in membrane vesicles of Streptococcus cremoris fused with bacteriorhodopsin proteoliposomes, Biochim. Biophys. Acta 808, 1–12.Google Scholar
  15. Driessen, A.J.M., De Vrij, W. and Konings, W.N. (1985c) Incorporation of beef-heart cytochrome c oxidase as a proton-motive-force-generating mechanism in bacterial membrane vesicles, Proc. Natl. Acad. Sci. 82, 7555–7559.PubMedGoogle Scholar
  16. Duzgunes, N. (1985) Membrane fusion, in: “Subcellular Biochemistry”, Vol. 11 (Roodyn, D.B., ed.), Plenum Publishing Co., New York, p. 195–286.Google Scholar
  17. Duzgunes, N., Wilschut, J., Fraley, R. and Papahadjopoulos, D. (1981) Studies on the mechanism of membrane fusion: Role of head-group composition in calcium- and magnesium-induced fusion of mixed phospholipid vesicles, Biochim. Biophys. Acta 642, 182–195.PubMedGoogle Scholar
  18. Duzgunes, N., Paiement, J., Freeman, K.B., Lopez, N.G., Wilschut, J. and Papahadjopoulos, D. (1984) Modulation of membrane fusion by ionotropic and thermotropic phase transitions, Biochemistry 23, 3486–3494.PubMedGoogle Scholar
  19. Duzgunes, N., Straubinger, R.M., Baldwin, P.A., Friend, D.S. and Papahadjopoulos, D. (1985) Proton-induced fusion of oleic acid-phosphatidylethanolamine liposomes, Biochemistry 24, 3091–3098.PubMedGoogle Scholar
  20. Ellens, H., Bentz, J. and Szoka, F.C. (1984) pH-induced destabilization of phosphatidylethanolamine-containing liposomes: Role of bilayer contact, Biochemistry 23, 1532–1538.Google Scholar
  21. Ellens, H., Bentz, J. and Szoka, F.C. (1985) H+- and Ca2+-induced fusion and destabilization of phosphatidylethanolamine liposomes, Biochemistry 24, 3099–3106.PubMedGoogle Scholar
  22. Ellens, H., Bentz, J. and Szoka, F.C. (1986) Fusion of phosphatidylethanolamine liposomes and the mechanism of the La-HII phase transition, Biochemistry 25, 4141–4147.PubMedGoogle Scholar
  23. Gething, M-J., Doms, R.W., York, D. and White, J. (1986) Studies on the mechanism of membrane fusion: Site-specific mutagenesis of the of the hemagglutinin of influenza virus, J. Cell Biol. 102, 11–23.PubMedGoogle Scholar
  24. Ginsberg, L. (1978) Does calcium cause fusion or lysis of unilamellar vesicles?, Nature 275, 758–760.PubMedGoogle Scholar
  25. Hackenbrock, C.R. (1981) Lateral diffusion and electron transfer in mitochondrial inner membranes, Trends Bioch. Sci. 6, 151–154.Google Scholar
  26. Haywood, A.M. and Boyer, B.P. (1985) Fusion of influenza virus membranes with liposomes at pH 7.5, Proc. Natl. Acad. Sci. USA 82, 4611–4615.PubMedGoogle Scholar
  27. Hoekstra, D., De Boer, T., Klappe, K. and Wilschut, J. (1984) Fluorescence method for measuring the kinetics of fusion between biological membranes, Biochemistry 23, 5675–5681.PubMedPubMedCentralGoogle Scholar
  28. Horn, R.G. (1984) Direct measurement of the force between two bilayers and observation of their fusion, Biochim. Biophys. Acta 778, 224–228.Google Scholar
  29. Hui, S.W., Stewart, T.P., Boni, L.T. and Yeagle, P.L. (1981) Membrane fusion through point defects in bilayers, Science 212, 921–923.PubMedGoogle Scholar
  30. Kendall, D.A. and McDonald, R.C. (1982) A fluorescence assay to monitor vesicle fusion and lysis, J. Biol. Chem. 257, 13892–13895.PubMedGoogle Scholar
  31. Lear, J.D. and DeGrado, W.F. (1987) Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA2, J. Biol. Chem. 262, 6500–6505.PubMedGoogle Scholar
  32. LeNeveu, D.M., Rand, R.P. and Parsegian, V.A. (1976) Measurements of forces between lecithin bilayers, Nature 259, 601–603.PubMedGoogle Scholar
  33. Maeda, T., Kawasaki, K. and Ohnishi, S-I. (1981) Interaction of influenza hemagglutinin with target membrane lipids is a key step in virus-induced hemolysis and fusion at pH 5.3, Proc. Natl. Acad. Sci. USA 78, 4133–4137.PubMedGoogle Scholar
  34. Marra, J. and Israelachvili, J. (1985) Direct measurements of forces between phosphatidylcholine and phosphatidylethanolamine in aqueous electrolyte solution, Biochemistry 24, 4608–4618.PubMedGoogle Scholar
  35. Matlin, K.S., Reggio, H., Helenius, A. and Simons, K. (1981) Infectious entry pathway of influenza virus into a canine kidney cell line, J. Cell Biol. 91, 601–613.PubMedGoogle Scholar
  36. Mellman, I., Fuchs, R. and Helenius, A. (1986) Acidification of the endocytic and exocytic pathways, Ann. Rev. Biochem. 55, 663–700.PubMedGoogle Scholar
  37. Metsikko, K., Van Meer, G. and Simons, K. (1986) Reconstitution of the fusogenic activity of Vesicular Stomatitis virus, EMBO J. 5, 3429–3435.PubMedPubMedCentralGoogle Scholar
  38. Nir, S. and Bentz, J. (1978) On the forces between phospholipid bilayers, J. Colloid Interface Sci. 65, 399–414.Google Scholar
  39. Nir, S., Wilschut, J. and Bentz, J. (1982) The rate of fusion of phospholipid vesicles and the role of bilayer curvature, Biochim. Biophys. Acta 688, 275–278.PubMedGoogle Scholar
  40. Nir, S., Bentz, J., Wilschut, J. and Duzgunes, N. (1983) Aggregation and fusion of phospholipid vesicles, Prog. Surf. Sci. 13, 1–124.Google Scholar
  41. Papahadjopoulos, D., Vail, W.J., Jacobson, K. and Poste, G. (1975) Cochleate lipid cylinders: Formation by fusion of unilamellar vesicles, Biochim Biophys. Acta 394, 483–491.PubMedGoogle Scholar
  42. Papahadjopoulos, D., Vail, W.J., Newton, C., Nir, S., Jacobson, J., Poste, G. and Lazo, R. (1977) Studsies on membrane fusion. III: The role of Ca2+-induced phase changes, Biochim. Biophys. Acta 465, 579–598.PubMedGoogle Scholar
  43. Portis, A., Newton, C., Pangborn, W. and Papahadjopoulos, D. (1979) Studies on the mechanism of membrane fusion: Evidence for an intermembrane Ca2+-phospholipid complex, synergism with Mg2+ and inhibition by spectrin, Biochemistry 18, 780–790.PubMedGoogle Scholar
  44. Rand, R.P. (1981) Interacting phospholipid bilayres: Measured forces and induced structural changes, Ann. Rev. Biophys, Bioeng. 10, 277–314.Google Scholar
  45. Rand, R.P. and Parsegian, V.A. (1984) Physical force considerations in model and biological membranes, Can. J. Biochem. Cell Biol. 62, 752–759.PubMedGoogle Scholar
  46. Richman, D.D., Hostetier, K.Y., Yazaki, P.J. and Clark, S. (1986) Fate of influenza virion proteins after entry into subcellular fractions of LLC cells and the effect of amantadine, Virology 151, 200–210.PubMedGoogle Scholar
  47. Rink, T.J., Sanchez, A. and Hallam, T.J. (1983) Diacylglycerol and phorbol ester stimulate secretion without raising the cytoplasmic free calcium in human platelets, Nature 305, 317–319.PubMedGoogle Scholar
  48. Roos, D.S., Davidson, R.L. and Choppin, P.W. (1987) Control of Membrane fusion in poly(ethylene glycol)-resistant cell mutants, in: “Cell fusion” (Sowers, A.E., ed.), Plenum Press, New York, pp. 123–144.Google Scholar
  49. Schlegel, R.A. and Lieber, M.R. (1987) Microinjection of culture cells via fusion with loaded erythrocytes, in: “Cell fusion” (Sowers, A.E., ed.) Plenum Press, New York, pp. 457–478.Google Scholar
  50. Schmidt, W., Patzak, A., Lingg, G., Winkler, H. and Plattner, H. (1983) Membrane events in adrenal chromaffin cells during exocytosis: a freeze-etching analysis after rapid cryofixation, Eur. J. Cell Biol. 32, 31–37.PubMedGoogle Scholar
  51. Schneider, H., Lemasters, J.J., Hochli, M. and Hackenbrock, C.R. (1980) Fusion of liposomes with mitochondrial inner membranes, Proc. Natl. Acad. Sci. USA 77, 442–446.PubMedGoogle Scholar
  52. Siegel, D.P. (1987) Membrane-membrane interactions via intermediates in lamellar-to-inverted hexagonal phase transitions, in: “Cell fusion” (Sowers, A.E., ed.) Plenum Press, New York, p. 181–207.Google Scholar
  53. Skehel, J.J., Bayley, P.M., Brown, E.B., Martin, S.R., Waterfield, M.D., White, J.M., Wilson, I.A. and Wiley, D.C. (1982) Changes in the conformation of influenza hemagglutinin at the pH optimum of virus-mediated membrane fusion, Proc. Natl. Acad. Sci. USA 79, 968–972.PubMedGoogle Scholar
  54. Stegmann, T., Hoekstra, D., Scherphof, G. and Wilschut, J. (1985) Kinetics of pH-dependent fusion between influenza virus and liposomes, Biochemistry 24, 3107–3113.PubMedGoogle Scholar
  55. Stegmann, T., Hoekstra, D., Scherphof, G. and Wilschut, J. (1986) Fusion activity of influenza virus: A comparison between artificial and biological target membranes, J. Biol. Chem. 261, 10966–10969.PubMedGoogle Scholar
  56. Stegmann, T., Booy, F.P. and Wilschut, J. (1987a) Effects of low pH on influenza virus: Activation and inactivation of the membrane fusion capacity of the hemagglutinin, J. Biol. Chem. 262, 17744–17749.PubMedGoogle Scholar
  57. Stegmann, T., Morselt, H.W.M., Scholma, J. and Wilschut, J. (1987b) Fusion on influenza virus in an intracellular acidic compartment measured by fluorescence dequenching, Biochim. Biophys. Acta 904, 165–170.PubMedGoogle Scholar
  58. Stegmann, T., Morselt, H.W.M., Booy, F.P., Van Breemen, J.F.L., Scherphof, G. and Wilschut, J, (1987c) Functional reconstitution on influenza virus envelopes, EMBO J. 6, 2651–2659.PubMedPubMedCentralGoogle Scholar
  59. Straubinger, R.M., Duzgunes, N. and Papahadjopoulos, D. (1985) pH-sensitive liposomes mediate cytoplasmic delivery of encapsulated macromolecules, FEBS Lett. 179, 148–154.PubMedGoogle Scholar
  60. Struck, D.K., Hoekstra, D. and Pagano, R.E. (1981) Use of resonance energy transfer to monitor membrane fusion, Biochemistry 20, 4093–4099.PubMedGoogle Scholar
  61. Verkleij, A.J. (1984) Lipidie intramembranous particles, Biochim. Biophys. Acta 779, 43–64.PubMedGoogle Scholar
  62. Verwey, E.J. and Overbeek, J.Th.G. (1948) Theory of the stability of lyophobic colloids, Elsevier, Amsterdam.Google Scholar
  63. Volsky, D.J., Shapiro, I.M. and Klein, G. (1980) Transfer of Epstein-Barr virus receptors to receptor-negative cells permits virus penetration and antigen expression, Proc. Natl Acad. Sci. USA 77, 5453–5457.PubMedGoogle Scholar
  64. Volsky, D.J., Gross, T., Sinangil, F., Kuszynsky, A., Bartzatt, R., Dambaugh, T. and Kieff, E. (1984) Expression of Epstein-Barr virus DNA and cloned DNA fragments in human lymphocytes following Sendai virus envelope-mediated gene transfer, Proc. Natl. Acad. Sci. USA 81, 5926–5930.PubMedGoogle Scholar
  65. Wang, C-Y. and Huang, L. (1987) pH-sensitive imunoliposomes mediate target-cell-specific delivery and controlled expression of a foreign gene in mouse, Proc. Natl. Acad. Sci. USA 84, 7851–7855.PubMedGoogle Scholar
  66. Wiley, D.C. and Skehel, J.J. (1987) The structure and function of the hemagglutinin membrane glycoprotein of the influenza virus, Ann. Rev. Biochem. 56, 365–394.PubMedGoogle Scholar
  67. White, J., Helenius, A. and Gething, M-J. (1982a) Hemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion, Nature 300, 658–659.PubMedGoogle Scholar
  68. White, J., Kartenbeck, J. and Helenius, A. (1982b) Membrane fusion activity of influenza virus, EMBO J. 1, 217–222.PubMedPubMedCentralGoogle Scholar
  69. White, J.M. and Wilson, I.A. (1987) Anti-peptide antibodies detect steps in a protein conformational change: Low-pH activation of the influenza virus hemagglutinin, J. Cell Biol. 105, 2887–2896.PubMedGoogle Scholar
  70. White, J., Kielian, M. and Helenius, A. (1983) Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16, 151–195.PubMedGoogle Scholar
  71. White, J.M., Doms, R.W., Gething, M-J., Kielian, M. and Helenius, A. (1986) Viral membrane fusion proteins, in: “Virus attachment and entry into cells” (Crowell, T.R. and Longberg-Holms, K., eds.), Am. Soc. Microbiol., Washington DC, p. 54–59.Google Scholar
  72. Wilschut, J. and Papahadjopoulos, D. (1979) Ca2+-induced fusion of phospholipid vesicles monitored by mixing of aqueous contents, Nature 281, 690–692.PubMedGoogle Scholar
  73. Wilschut, J., Duzgunes, D., Fraley, R. and Papahadjopoulos, D. (1980) Studies on the mechanism of membrane fusion: Kinetics of calcium ion-induced fusion of phosphatidylserine vesicles followed by a new assay for mixing of aqueous vesicle contents, Biochemistry 19, 6011–6021.PubMedGoogle Scholar
  74. Wilschut, J., Duzgunes, D. and Papahadjopoulos, D. (1981) Calcium/magnesium specificity in membrane fusion: Kinetics of aggregation and fusion of phosphatidylserine vesicles and the role of bilayer curvature, Biochemistry 20, 3126–3133.PubMedGoogle Scholar
  75. Wilschut, J., Holsappel, M. and Jansen, R. (1982) Ca2+-induced fusion of cardiolipin/phosphatidylcholine vesicles monitored by mixing of aqueous vesicle contents, Biochim. Biophys. Acta 690, 297–301.PubMedGoogle Scholar
  76. Wilschut, J., Duzgunes, N., Hong, K., Hoekstra, D. and Papahadjopoulos, D. (1983) Retention of aqueous contents during divalent cation-induced fusion of phospholipid vesicles, Biochim. Biophys. Acta 734, 309–318.Google Scholar
  77. Wilschut, J. and Hoekstra, D. (1984) Membrane fusion: From liposomes to biological membranes, Trends Biochem. Sci. 9, 479–483.Google Scholar
  78. Wilschut, J., Nir, S., Scholma, J. and Hoekstra, D. (1985a) Kinetics of Ca2+-induced fusion of cardiolipin-phosphatidylcholine vesicles: Correlation between vesicle aggregation, bilayer destabilization and fusion, Biochemistry 24, 4630–4636.PubMedGoogle Scholar
  79. Wilschut, J., Duzgunes, N., Hoekstra, D. and Papahadjopoulos, D. (1985b) Modulation of membrane fusion by membrane fluidity: Temperature dependence of divalent cation-induced fusion of phosphatidylserine vesicles, Biochemistry 24, 8–14.PubMedGoogle Scholar
  80. Wilschut, J. and Hoekstra, D. (1986) Membrane fusion: Lipid vesicles as a model system, Chem. Phys. Lipids 40, 145–166.PubMedGoogle Scholar
  81. Wilschut, J. (1988) Membrane interactions and fusion, in: “Energetics of the secretion response” (Akkerman, J.W.N., ed.), CRC Press, Boca Raton, in press.Google Scholar
  82. Yoshimura, A. and Ohnishi, S-I. (1984) Uncoating of influenza virus in endosomes, J. Virol. 51, 497–504.PubMedPubMedCentralGoogle Scholar
  83. Zimmermann, U. (1982) Electric field-mediated fusion and related electrical phenomena, Biochim. Biophys. Acta 694, 227–277.PubMedGoogle Scholar
  84. Zimmermann, U. (1983) Eléctrofusion of cells: Principles and industrial potential, Trends Biotechnol. 1, 149–155.Google Scholar
  85. Zimmermann, U. (1986) Electrical breakdown, electropermeabilization and electrofusion, Rev. Physiol. Biochem. Pharmacol. 105, 175–256.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Jan Wilschut
    • 1
  • Janny Scholma
    • 1
  • Toon Stegmann
    • 1
  1. 1.Laboratory of Physiological ChemistryUniversity of GroningenGroningenThe Netherlands

Personalised recommendations