Electron Transfer in Monolayer Assemblies and Energy Storage in Photosynthetic Bacteria

  • Hans Kuhn
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 238)


Simulating photosynthesis is of interest in developing future solar energy conversion technology. It is important to know the construction of the photosynthetic machinery, its mechanism and how the machinery can be simulated in artificial models. The primary process, as known since many years1, is a photoinduced transmembrane electron transfer carrying the electron from a low to a high energy level. Attempts to find a mechanism for that process and to construct corresponding arrangements have stimulated much work on electron transfer in monolayer assemblies22–11. On that basis12 and in the light of the recent X-ray analysis by Deisenhofer et al.13 detailed design principles for an optimal device for energy storage by photoinduced electron transfer are discussed and it is shown that the bacterial reaction center is constructed according to these principles. It is found from these design principles that the arrangement of the chromophores in the reaction center is optimal for the purpose of energy storage, and small deviations in the arrangement prevent its operation. Future energy storing systems constructed according to these principles then must be extremely well organized, each functional component molecule being exactly adjusted to each other.


Electron Transfer Reaction Center Photosynthetic Bacterium Photoinduced Electron Transfer Special Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. T. Witt, B. Rumberg and W. Junge, Electron transfer, field changes, proton translocation and phosphorylation in photosynthesis, 19. Colloquium der Gesellschaft für Biologische Chemie, Mosbach, Springer-Verlag Heidelberg (1968), S. 262.Google Scholar
  2. 2.
    H. Kuhn, Electron tunneling effects in monolayer assemblies, Chem. Phys. Lipids 8:401 (1972).CrossRefGoogle Scholar
  3. 3.
    U. Schoeler, K. H. Tews and H. Kuhn, Potential model of dye molecule from measurements of the photocurrent in monolayer assemblies, J. Chem. Phys. 61:5009 (1975).CrossRefGoogle Scholar
  4. 4.
    K. P. Seefeld, D. Möbius and H. Kuhn, Electron transfer in monolayer assemblies with incorporated ruthenium (II) complexes, Helv. Chim. Acta 60:2608 (1977).CrossRefGoogle Scholar
  5. 5.
    E. E. Polymeropoulos, D. Möbius and H. Kuhn, Photoconduction in monolayer assemblies with functional units of sensitizing and conducting molecular components, J. Chem. Phys. 68:3918 (1978).CrossRefGoogle Scholar
  6. 6.
    H. Kuhn, Synthetic molecular organizates, J. Photochem. 10:111 (1979);CrossRefGoogle Scholar
  7. 6a.
    D. Möbius, Molecular cooperation in monolayer organizates, Acc. Chem. Res. 14:63 (1981).CrossRefGoogle Scholar
  8. 7.
    D. Möbius, Photoelectron transfer in organized assemblies in: Photochem. Conversion and Storage of Solar Energy, Part A, ed. J. Rabani, The Weizmann Press of Israel (1982), p. 139.Google Scholar
  9. 8.
    B. Mann and H. Kuhn, Tunneling through fatty acid salt monolayers, J. Appl. Phys. 42:4398 (1971);CrossRefGoogle Scholar
  10. 8a.
    E. E. Polymeropoulos, Electron tunneling through fatty-acid monolayers, J. Appl. Phys. 48:2404 (1977),CrossRefGoogle Scholar
  11. 8b.
    J. Sagiv and E. E. Polymeropoulos, Electrical conduction through adsorbed monolayer, J. Chem. Phys. 69:1836 (1978)CrossRefGoogle Scholar
  12. 8c.
    E. E. Polymeropoulos, Electron tunneling through superconducting Al/monolayer/Pb junctions, Solid State Commun. 28:883 (1978).CrossRefGoogle Scholar
  13. 9.
    M. Sugi, K. Nembach, D. Möbius and H. Kuhn, Quantum mechanical hopping in one-dimensional superstructure, Solid State Commun. 15:1867 (1974)CrossRefGoogle Scholar
  14. 9a.
    M. Sugi, K. Nembach and D. Möbius, Photoconduction in Langmuir Films with periodically arranged dye-sensitizers, Thin Solid Films 27:205 (1975).CrossRefGoogle Scholar
  15. 10.
    M. Sugi, T. Fukui and S. Iizima, Hopping conduction in Langmuir films. Appl. Phys. Lett. 27:559 (1975)CrossRefGoogle Scholar
  16. 10a.
    S. Iizima and M. Sugi, Electrical conduction in mixed Langmuir films, Appl. Phys. Lett. 28:548 (1976)CrossRefGoogle Scholar
  17. 10b.
    M. Sugi, T. Fukui and S. Iizima, T-1/2-Law of de conductivity in Langmuir films, Chem. Phys. Lett. 45:163 (1977)CrossRefGoogle Scholar
  18. 10c.
    M. Sugi and S. Iizima, Anisotropic photocondution in dye—sensitized Langmuir films, Solid Films 68:199 (1980)CrossRefGoogle Scholar
  19. 10d.
    M. Sugi, M. Saito, T. Fukui and S. Iizima, Effect of dye concentration in Langmuir multilayer photoconductors, Thin Solid Films 99:17 (1983).CrossRefGoogle Scholar
  20. 11.
    M. Sugi, T. Fukui and S. Iizima, Direct evaluation of the hopping rate in Langmuir multilayer assemblies, Phys. Rev. B 18:725 (1978)CrossRefGoogle Scholar
  21. 11a.
    M. Sugi and S. Iizima, Single layer conductance of cadmium behenate in the Langmuir multilayer assembly system, Appl. Phys. Lett. 34:290 (1979).CrossRefGoogle Scholar
  22. 12.
    H. Kuhn, Electron transfer mechanism in the reaction center of photosynthetic bacteria, Phys. Rev. A 34:3409 (1986).CrossRefGoogle Scholar
  23. 13.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, X-ray structure analysis of a membrane protein complex. Electron sensity map at 3 A resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis, J. Mo. Biol. 180:385 (1984).CrossRefGoogle Scholar
  24. 14.
    V. Czikkely, H. D. Försterling and H. Kuhn, Light absorption and structure of aggregates of dye molecules, Chem. Phys. Letters 6:11 (1970)CrossRefGoogle Scholar
  25. 14a.
    **14a. V. Czikkely, H. D. Försterling and H. Kuhn, **Extended dipole model for aggregates of dye molecules, Chem. Phys. Letters 6:207 (1970)CrossRefGoogle Scholar
  26. 14b.
    V. Czikkely, G. Dreizler, H. D. Försterling, H. Kuhn, J. Sondermann, P. Tillmann and J. Wiegand, Licht-absorption von Farbstoff-Molekülpaaren in Sandwichsystemen aus monomolekularen Schichten, Z. Naturforschung 24a:1821 (1969)Google Scholar
  27. 14c.
    W. Huber and H. Kuhn, Elektronengasmodel organischer Farbstoffe. Feldeffekt als Ursache von Intensitätsanomalien bei Absorptionsbanden, Helv. Chim. Acta 42:363 (1959).CrossRefGoogle Scholar
  28. 15.
    M. Plato et al. (1987) to be publishedGoogle Scholar
  29. 15a.
    W. Lubitz, F. Lendzian, M. Plato, E. Tränkle and K. Möbius, Proc. Coll. Ampere XXIII, Rome, p. 486 (1986)Google Scholar
  30. 15b.
    A. Warshel and W. W. Parson, Spectroscopic properties of photosynthetic reaction centers, J. Am. Chem. Soc. 109:6143 (1987).CrossRefGoogle Scholar
  31. 16.
    H. P. Braun, M. E. Michel-Beyerle, J. Breton, S. Buchanan and H. Michel, Electric field effects on absorption spectra of reaction centers of Rb. sphaeroides and Rps. viridis, FEBS Letters 221:221 (1987)CrossRefGoogle Scholar
  32. 16a.
    M. Lösche, G. Feher and M. Y. Okamura, The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis, Proc. Natl. Acad. Sci. USA 84:7537 (1987)CrossRefGoogle Scholar
  33. 16b.
    D. J. Lockhardt, S. G. Boxer, Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers, Biochem. 26:664 (1987).CrossRefGoogle Scholar
  34. 17.
    R. A. Marcus, Superexchange versus an intermediate BChl mechanism in reaction centers of photosynthetic bacteria, Chem. Phys. Letters 133:47 (1987)CrossRefGoogle Scholar
  35. 17a.
    M. Bixon, J. Jortner, M. E. Michel-Beyerle, A. Ogrodnik and W. Lersch, The role of the accessory bacteriochlorophyll in reaction centers of photosynthetic bacteria: Intermediate acceptor in the primary electron transfer, Chem. Phys. Letters 140:626 (1987)CrossRefGoogle Scholar
  36. 17b.
    V. A. Shuvalov and L. N. M. Duysens, Primary electron transfer reactions in modified reaction centers from Rhodopseudomonas sphaeroides, Proc. Natl. Acad. Sci. USA 83:1690 (1986)CrossRefGoogle Scholar
  37. 17c.
    P. O. J. Scherer and S. F. Fischer, On the initial charge separation in bacterial reaction centers: long-range electron transfer via an exciton-charge transfer (ECT) mechanism, Chem. Phys. Letters 141:179 (1987).CrossRefGoogle Scholar
  38. 18.
    J. Deisenhofer and H. Michel, The crystal structure of the photosynthetic reaction center from Rhodopseudomonas viridis, in: M. E. Michel-Beyerle, Ed., Antennas and reaction centers of photosynthetic bacteria (Springer, Berlin 1985), p. 94.CrossRefGoogle Scholar
  39. 19.
    J. J. Hopfield in: B. Chance, D. DeVault, H. Frauenfelder, R.A. Marcus, J. R. Schrieffer and N. Sutin (eds.), Tunneling in Biological Systems, Academic Press 1979, p. 424.Google Scholar

Copyright information

© Plenum Press, New York 1988

Authors and Affiliations

  • Hans Kuhn
    • 1
  1. 1.Karl-Friedrich-Bonhoeffer-InstitutMax-Planck-Institut für biophysikalische ChemieGöttingen-NikolausbergGermany

Personalised recommendations