Skip to main content

Biotechnological Application of Membrane Proteins Reconstituted Into Vesicular and Planar Lipid Bilayers

  • Chapter
  • First Online:
Biotechnological Applications of Lipid Microstructures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 238))

Abstract

Proteins and lipids are the building blocks of biological membranes. In the past and at present, only the lipids in the form of bilayers, vesicles, and thin films found/find applications in technology. However, the membrane proteins are responsible for most of the vital processes accomplished by membranes. These proteins, which are in part or completely embedded in the lipid matrix mainly via helical amino acid regions, act as pores (channels), pumps, and transport systems for ions and nutriments. Furthermore, they are very selective receptors for hormones, neurotransmitter, drugs, medicine, and they mediate specific cell-cell recognition. Biological membranes can be regarded as the largest and most active organ in a living organism. They are the site of many vital processes for life. Photosynthesis and oxidative phosphorylation, the two most important energy conversion processes in biological systems as well as sensory transduction are carried out by membranes, i.e., by the proteins residing in the membrane. Therefore, it can be expected that in the near future membrane proteins will gain great importance in biotechnology. In the following, the putative capacity of membrane proteins to serve as biosensor, biochip, and bioconverter of energy will be discussed by referring to the light-driven proton pump bacteriorhodopsin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Oesterhelt and W. Stoeckenius, Functions of a new photoreceptor membrane, Proc. Nat, Acad. Sci. USA 70:2853–2857 (1973).

    Article  CAS  Google Scholar 

  2. N. Dencher and M. Wilms, Flash photometric experiments on the photo-chemical cycle of bacteriorhodopsin, Biophys. Struct. Mechanism 1:259–271 (1975).

    Article  CAS  Google Scholar 

  3. S. Grzesiek and N. A. Dencher, Time-course and stoichiometry of H+-release and uptake during the photochemical cycle of bacteriorhodopsin, FEBS Lett. 208:337–342 (1986).

    Article  CAS  Google Scholar 

  4. A. Matsuno-Yagi and Y. Mukohata, Two possible roles of bacteriorhodop-sin; a comparative study of strains of Halobacterium halobium differing in pigmentation, Biochem. Biohys. Res. Commun. 78:237–243 (1977).

    Article  CAS  Google Scholar 

  5. B. Schobert and J. K. Lanyi, Halorhodopsin is a light-driven chloride pump, J. Biol. Chem. 257:10306–10313 (1982).

    CAS  PubMed  Google Scholar 

  6. A. Blanck and D. Oesterhelt, The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin, EMBO J. 6: 265–273 (1987).

    Article  CAS  Google Scholar 

  7. N. A. Dencher, The five retinal-protein pigments of halobacteria: Bacteriorhodopsin, Halorhodopsin, P 565, P 370, and slow-cycling rhodopsin, Photochem. Photobiol. 38:753–767 (1983).

    Article  CAS  Google Scholar 

  8. J. Briggs, Biosensors emerge from the laboratory, Nature 329:565–566 (1987).

    Article  Google Scholar 

  9. N. A. Dencher, P. A. Burghaus, and S. Grzesiek, Determination of the net proton-hydroxide ion permeability across vesicular lipid bilayers and membrane proteins by optical probes, Methods Enzymol. 127:746–760 (1986).

    Article  CAS  Google Scholar 

  10. F. T. Hong and M. Conrad, The bacteriorhodopsin as a prototype molecu-lar electronic device, in: “Proceedings of the 3rd International Symposium on Molecular Electronic Devices”, F. L. Carter and H. Wohltjen, ed., North-Holland, Amsterdam (1987).

    Google Scholar 

  11. F. T. Hong, The bacteriorhodopsin model membrane system as a prototype molecular computing element, BioSystems 19:223–236 (1986).

    Article  CAS  Google Scholar 

  12. H. Schindler, Formation of planar bilayers from artificial or native membrane vesicles, FEBS Lett. 122:77–79 (1980).

    Article  CAS  Google Scholar 

  13. E. Bamberg, N. A. Dencher, A. Fahr, and M. P. Heyn, Transmembraneous incorporation of photoelectrically active bacteriorhodopsin in planar lipid bilayers, Proc. Natl. Acad. Sci. USA 78:7502–7506 (1981).

    Article  CAS  Google Scholar 

  14. D. Braun, N. A. Dencher, A. Fahr, M. Lindau, and M. P. Heyn, Nonlinear voltage dependence of the light-driven proton pump current of bacteriorhodopsin, Biophys. J. 53 (1988).

    Google Scholar 

  15. S.-B. Hwang and W. Stoeckenius, Purple membrane vesicles: Morphology and proton translocation, J. Membrane Biol. 33:325–350 (1977).

    Article  CAS  Google Scholar 

  16. E. Racker, Reconstitution of membrane processes, Methods Enzymol. 55:699–711 (1979).

    Article  CAS  Google Scholar 

  17. P. W. M. van Dijck and K. van Dam, Bacteriorhodopsin in phospholipid vesicles, Methods Enzymol 88:17–25 (1982).

    Article  Google Scholar 

  18. N. A. Dencher, Spontaneous transmembrane insertion of membrane proteins into lipid vesicles facilitated by short-chain lecithins, Biochemistry 25:1195–1200 (1986).

    Article  CAS  Google Scholar 

  19. R. Casadio and W. Stoeckenius, Effect of protein-protein interaction on light adaptation of bacteriorhodopsin, Biochemistry 19:3374–3381 (1980).

    Article  CAS  Google Scholar 

  20. N. A. Dencher and A. Wach, unpublished work.

    Google Scholar 

  21. J. L. Rigaud, A. Bluzat, and S. Bushlen, Incorporation of bacteriorho-dopsin into large unilamellar liposomes by reverse phase evaporation, Biochem. Biophys. Res. Commun. 111:373–382 (1983).

    Article  CAS  Google Scholar 

  22. E. Racker, B. Violand, S. O’Neal, M. Alfonzo, and J. Telford, Reconsti-tution, a way of biochemical research; some new approaches to membrane-bound enzymes, Arch. Biochem. Biophys. 198:470–477 (1979).

    Article  CAS  Google Scholar 

  23. M. P. Heyn and N. A. Dencher, Reconstitution of monomeric bacteriorho-dopsin into phospholipid vesicles, Methods Enzymol. 88:31–35 (1982).

    Article  CAS  Google Scholar 

  24. N. A. Dencher and M. P. Heyn, Preparation and properties of monomeric bacteriorhodopsin, Methods Enzymol. 88:5–10 (1982).

    Article  CAS  Google Scholar 

  25. J. Krupinski and G.G. Hammes, Steady-state ATP synthesis by bacterio-rhodopsin and chloroplast coupling factor co-reconstituted into asolectin vesicles, Proc. Natl. Acad. Sci. USA 83:4233–4237 (1986).

    Article  CAS  Google Scholar 

  26. N. A. Dencher, The light-energized H+-pump bacteriorhodopsin: A model system for functional transmembrane reconstitution of ion channels, receptors, and pumps, in: “Receptors and Ion Channels”, Y. A. Ovchinnikov and F. Hucho, ed., Walter de Gruyter, Berlin/New York, pp. 265–273 (1987).

    Google Scholar 

  27. N. A. Dencher, Gentle and fast transmembrane reconstitution of membrane proteins, Methods Enzymol., in press (1988).

    Google Scholar 

  28. A. W. Scotto and D. Zakim, Reconstitution of membrane proteins: cata-lysis by cholesterol of insertion of integral membrane proteins into preformed lipid bilayers, Biochemistry 25:1555–1561 (1986).

    Article  CAS  Google Scholar 

  29. M. P. Heyn, P.-J. Bauer, and N. A. Dencher, A natural CD label to probe the structure of the purple membrane from Halobacterium halobium by means of exciton coupling effects, Biochem. Biophys. Res. Commun. 67:897–903 (1975).

    Article  CAS  Google Scholar 

  30. R. J. Cherry, Rotational and lateral diffusion of membrane proteins, Biochim. Biophys. Acta 559:289–327 (1979).

    Article  CAS  Google Scholar 

  31. M. P. Heyn, R. J. Cherry, and N. A. Dencher, Lipid-protein interactions in bacteriorhodopsin-dimyristoylphosphatidylcholine vesicles, Biochemistry 20:840–849 (1981).

    Article  CAS  Google Scholar 

  32. N. A. Dencher and M. P. Heyn, Bacteriorhodopsin monomers pump protons, FEBS Lett. 108:307–310 (1979).

    Article  CAS  Google Scholar 

  33. N. A. Dencher, K.-D. Kohl, and M. P. Heyn, Photochemical cycle and light-dark adaptation of monomeric and aggregated bacteriorhodopsin in various lipid environments, Biochemistry 22:1323–1334 (1983),

    Article  CAS  Google Scholar 

  34. S. Grzesiek and N. A. Dencher, Monomeric and aggregated bacteriorhodop-sin: single-turnover transport efficiency and photochemistry, Proc. Natl. Acad. Sci. USA, submitted (1988).

    Google Scholar 

  35. M. Shinitzky and Y. Barenholz, Fluidity parameters of lipid regions determined by fluorescence polarization, Biochim. Biophys. Acta 515:367–394 (1978).

    Article  CAS  Google Scholar 

  36. M. Rehorek, N. A. Dencher, and M. P. Heyn, Fluorescence energy transfer from diphenylhexatriene to bacteriorhodopsin in lipid vesicles, Biophys. J. 43:39–45 (1983).

    Article  CAS  Google Scholar 

  37. M. Rehorek, N. A. Dencher, and M. P. Heyn, Long-range lipid-protein interactions. Evidence from time-resolved fluorescence depolarization and energy transfer experiments with bacteriorhodopsin-dimyristoylphosphatidylcholine vesicles, Biochemistry 24:5980–5988 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Dencher, N.A. (1988). Biotechnological Application of Membrane Proteins Reconstituted Into Vesicular and Planar Lipid Bilayers. In: Gaber, B.P., Schnur, J.M., Chapman, D. (eds) Biotechnological Applications of Lipid Microstructures. Advances in Experimental Medicine and Biology, vol 238. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7908-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7908-9_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7910-2

  • Online ISBN: 978-1-4684-7908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics