Skip to main content

Immobilized Photosynthetic Membranes and Cells for the Production of Fuels and Chemicals

  • Chapter
  • First Online:
Biotechnological Applications of Lipid Microstructures

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 238))

Abstract

Photosynthesis by plants, algae, cyanobacteria (bluegreen algae) and photosynthetic bacteria converts large quantities of solar radiation into chemical energy in the form of carbohydrates, lipids, proteins, ammonia, hydrogen, ATP, pyridine nucleotides, etc. The importance of photosynthetic processes as energy converters lies in the facts that the substrates used such as water, CO2 and N2 are ubiquitous and inexpensive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter, D. and Hall, D.O., 1986, Long-term stability of photosynthetic electron transport in polyvinyl foam immobilized cyanobacteria, Photobiochem. Photobiophys., 12:193.

    Google Scholar 

  • Benemann, J.R., Berenson, J.A., Kaplan, N.O. and Kamen, M.D., 1973, Hydrogen evolution by a chloroplast-ferredoxinhydrogenase system, Proc. Nat. Acad. Sci. USA, 70:2317.

    Google Scholar 

  • Borowitzka, M.A. and Borowitzka, L.J. eds., 1988, “Microalgal biotechnology”, Cambridge University Press, Cambridge.

    Google Scholar 

  • Boussiba, S. and Gibson, J., 1985, The role of glutamine synthetase activity in ammonium and methyl ammonium transport in Anacystis nidulans R-2, FEBS Lett., 180:13.

    Article  CAS  Google Scholar 

  • Brodelius, P. and Mosbach, K., eds., 1987, “Immobilized enzymes and cells”, Methods in Enzymology, vol. 135, Academic Press, New York.

    Google Scholar 

  • Brouers, M. and Hall, D.O., 1986, Ammonia and hydrogen production by immobilized cyanobacteria, J.Biotechnol., 3:307.

    Article  CAS  Google Scholar 

  • Brouers, M., de Jong, H., Shi, D.J. and Hall, D.O., 1988. Immobilized cells: An appraisal of the methods and applications o# cell immobilization techniques, in: “Algal Biotechnology”, R.C. Cresswell, T.A.V. Rees and N. Shah, eds. Longman, London (In press).

    Google Scholar 

  • Cammack, R., Hall, D.U. and Rao, K.K., 1985, Hydrogenases: structure and applications in hydrogen production, in: “Microbial gas metaboism: mechanistic, metabolic and biotechnological aspects”, R.K. Poole and C. Dow, eds., Academic Press, London.

    Google Scholar 

  • Costerton, J.W., 1985, The role of bacterial exopolysaccharides in nature and disease, Developments in Industrial Microbiology, 26:249.

    CAS  Google Scholar 

  • Gest, H., 1980, The evolution of biological energy transducing systems, FEMS Microbiol.Lett., 7:73.

    Article  CAS  Google Scholar 

  • Gisby, P.E., Rao, K.K. and Hall, D.O., 1987, Entrapment techniques for chloroplasts, cyanobacteria and hydrogenases, Methods in Enzymology. 135:440.

    Article  CAS  Google Scholar 

  • Gordon, J.K. and Brill, W.J., 1974, Derepression of nitrogenase synthesis in the presence of excess of NH4+, Biochem. Biophys. Res. Commun., 59:967.

    Google Scholar 

  • Gratzel, M., ed., 1983, “Energy Resources through Photochemistry and Catalysis”, Academic Press New York.

    Google Scholar 

  • Hall, D.O., Affolter, D.A., Brouers, M., Shi, D.J., Yang, L.W. and Rao, K.K., 1985, Photobiological production of fuels and chemicals by immobilized algae, in: “Plant Products and New Technology”, K.W. Fuller and J.R. Gallon, eds., Oxford University Press.

    Google Scholar 

  • Hall, D.O., Brouers, M., de Jong, H., De la Rosa, M.A., Rao, K.K., Sh, D-J. and Yang, L.W., 1987, Immobilized photosynthetic systems for the production of fuels and chemicals, Photobiochem. Photobiophys. Suppl., 167.

    Google Scholar 

  • Haselkorn, R., 1978, Heterocysts, Ann. Rev. Plant Physiol., 29:319.

    Google Scholar 

  • Haselkorn, R., 1986, Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria, Ann. Rev. Microbiol., 40:525.

    Google Scholar 

  • Hoffmann, D., Thauer, R. and Trebst, A., 1977. Photosynthetic hydrogen evolution by spinach chloroplasts coupled to a Clostridium hydrogenase, Z.Naturforsch., 32C:257.

    Article  CAS  Google Scholar 

  • Houchins, J.P., 1984, The physiology and biochemistry of hydrogen metabolism in cyanobacteria, Biochim. Biophys. Acta. 768:227.

    Google Scholar 

  • Howarth, D.C. and Codd, G.A., 1985, The uptake and production of molecular hydrogen by unicellular cyanobacteria, J. Gen. Microbiol., 131:1561.

    Google Scholar 

  • Jensen, B.B., Cox, R.P. and Burris, R.H., 1986, Isolation of cyanobacterial heterocysts with high and sustained dinitrogen-fixation capacity supported by endogenous reductants, Arch. Microbiol., 145:241.

    Google Scholar 

  • Kerby, N.W., Musgrave, S.C., Rowell, P., Shestakov, S.V. and Stewart, W.D.P., 1986, Photoproduction of ammonium by immobilized mutant strains of Anabaena variabilis. Appl. Microbiol. Biotechnol., 24:42.

    Google Scholar 

  • Lambert, G.R. and Smith, G.D., 1981, The hydrogen metabolism of cyanobacteria, Biol. Rev., 56:589.

    Google Scholar 

  • Latorre, C., Lee, J.H., Spiller, H. and Shanmugam, K.T., 1986, Ammonium ion-excreting cyanobacterial mutant as a source of nitrogen for the growth of rice: a feasibility study, Biotech. Lett., 8:507.

    Google Scholar 

  • Meekes, J.C., Steinberg, N., Joseph, C.M., Enderlin, C.S., Jorgensen, P.A. and Peters, G.A., 1985, Assimilation of exogenous dinitrogen-derived 13NH4 by Anabaena azollae separated from Azolla caroliniana wild, Arch. Microbiol., 142:229.

    Google Scholar 

  • Muallem, A., Bruce, D. and Hall, D.O., 1983, Photoproduction of hydrogen and NADPH2 by blue-green algae immobilized in polyurethane foam, Biotech. Lett., 5:365.

    Google Scholar 

  • Musgrave,S.C.,Kerby,N.W.,Codd,G.A.andStewart,W.D.P., 1982, Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacterium Anabaena 27893, Biotech. Lett., 4:647.

    Article  CAS  Google Scholar 

  • Nierzwicki-Bauer, S.A., Balkwill, D.L. and Stevens, S.E., 1984, Morphology and ultrastructure of the cyanobacterium Mastigocladus laminosus growing under nitrogen-fixing conditions, Arch. Microbiol., 137:97.

    Google Scholar 

  • Ochiai, H., Shibata, H., Sawa, Y. and Katoh, T., 1980, “Living electrode” as a long-lived photoconverter for biophotolysis of water, Proc. Natl. Acad. Sci. USA, 77:2442.

    Google Scholar 

  • Packer, L., 1980, H2 production by an in vitro chloroplast, ferredoxin, hydrogenase reconstituted system, Methods in Enzymology, 69:625.

    Article  CAS  Google Scholar 

  • Papageorgiou, G.C. and Lagoyanni, T., 1986, Immobilization of photosynthetically active cyanobacteria in glutaraldehyde-crosslinked albumin matrix, Appl. Microbiol. Biotechnol., 23:417.

    Google Scholar 

  • Peters, G.A., Ray, T.B., Mayne, B.C. and Toia, R.E., 1980, Azolla-Anabaena association: morphological and physiological studies, in: “Nitrogen Fixation” Vol.II, W.E. Newton and W.H. Orme Johnson, eds., University Park Press, Baltimore, MD.

    Google Scholar 

  • Ramos, J.L., Guerrero, M.G. and Losada, M., 1982, Sustained photoproduction of ammonia from nitrate by Anacystis nidulans. Appl. Environ. Microbiol., 44:1020.

    Google Scholar 

  • Rao, K.K. and Hall, D.O., 1979, Hydrogen production from isolated chloroplasts, in “Topics in Photosynthesis”, vol.3, J.Barber, ed., Elsevier Scientific, Amsterdam.

    Google Scholar 

  • Rao, K.K., Cammack, R. and Hall, D.O., 1985, Evolution of light energy conversion, in: “Evolution of Prokaryotes”, K.H. Schleifer and E. Stackebrant, eds., Academic Press, London.

    Google Scholar 

  • Rao, K.K. and Hall, D.O., 1988, Hydrogenases: Isolation and assay, in “Methods in Enzymology. Cyanobacteria”. L. Packer and A.N. Glazer, eds., Academic Press, New York, in press.

    Google Scholar 

  • Robins, R.J., Hall, D.O., Shi, D-J., Turner, R.J. and Rhodes, M.J.C., 1986, Mucilage acts to adhere cyanobacteria and cultured plant cells to biological and inert surfaces, FEMS Microbiol. Lett., 34:155.

    Article  CAS  Google Scholar 

  • Serra, J.L., Ochoa de Alda, J.A.O. and Llama, M.J., 1988, Isolation and some properties of photosynthetic membrane vesicles enriched in Photosystem I from Phormidium laminosum by a non-detergent method, in: “Photocatalytic Production of Energy-rich compounds”, D.O. Hall and G. Grassi, eds, Elsevier Applied Science, London, in press.

    Google Scholar 

  • Shi, D-J., Brouers, M., Hall, D.O. and Robins, R.J., 1987, The effects of immobilization on the biochemical, physiological and morphological features of Anabaena azollae. Planta. 172: 298.

    Article  CAS  Google Scholar 

  • Smith, G.D., Muallem, A. and Hall, D.O., 1982, Hydrogenase catalyzed photoproduction of hydrogen by photosystem I of Mastiuocladus laminosus and Phormidium laminosum, Photobiochem. Photobiophvs., 4:307.

    Google Scholar 

  • Solorzano, L., 1969, Determination of ammonia in natural waters by the phenol-hypochlorite method, Limnol. Oceanogr., 14:799.

    Google Scholar 

  • Stewart, W.D.P., 1980, Some aspects of structure and function in N2-fixing cyanobacteria, Ann. Rev. Microbiol., 34:497.

    Google Scholar 

  • Stewart, W.D.P., Codd, G.A. and Rai, A.N., 1983, H2 production from sunlight, air and water by N2-fixing systems involving cyanobacteria, in “Photochemical, Photoelectrochemical and Photobiological Processes”, D.O. Hall, W. Palz and D. Pirrwitzi, eds., D. Reidel Publ. Co., Dordrecht.

    Google Scholar 

  • Subramanian, G. and Shanmugasundaram, S., 1986, Uninduced ammonia release by the nitrogen fixing cyanobacterium Anabaena, FEMS Microbiol. Lett., 37:151.

    Google Scholar 

  • Vincenzini, M., Brouers, M., Hall, D.O. and Materassi, R., 1986, Ammonia photoproduction by immobilized Cyanospir arippkae. Photobiochem. Photobiophys., 13:85.

    Google Scholar 

  • Vrachnou, E., Vlachopoulos, N. and Gratzel, M., 1988, Efficient visible light sensitization of TiO2 by surface complexation with transition metal cyanides, in “Photocatalytic Production of Energy-rich compounds”, D.O. Hall and G. Grassi, eds., Elsevier Applied Science, London, in press.

    Google Scholar 

  • Webb, C., Black, G.M. and Atkinson, B., eds., 1986, “Process engineering aspects of immobilised cell systems”, Pergamon Press, Oxford.

    Google Scholar 

  • Wolk, P.C., 1975, Differentiation and pattern formation in filamentous blue-green algae, in: “Spore VI”, P. Gerhardt, H. Sadoff and R. Costilow, eds., Am. Soc. Microbiol., Washington, D.G

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Plenum Press, New York

About this chapter

Cite this chapter

Hall, D.O., Rao, K.K. (1988). Immobilized Photosynthetic Membranes and Cells for the Production of Fuels and Chemicals. In: Gaber, B.P., Schnur, J.M., Chapman, D. (eds) Biotechnological Applications of Lipid Microstructures. Advances in Experimental Medicine and Biology, vol 238. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7908-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7908-9_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7910-2

  • Online ISBN: 978-1-4684-7908-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics