Skip to main content

Coulomb Energies and Nuclear Shapes

  • Conference paper
Atomic Masses and Fundamental Constants 4
  • 99 Accesses

Abstract

One of the first estimates of nuclear radii was obtained from experimental Coulomb energies. Bethe (1), over 30 years ago, showed that the energy difference between the ground states of mirror nuclei is essentially due to a difference in electrostatic energy. Assuming spherical charge distributions of uniform density, charge radii were extracted. Many experimental and theoretical papers on Coulomb energies have appeared since, but muonic X-ray and electron scattering experiments (2,3) have contributed considerably more to the understanding of the size and shape of nuclear charge distributions. Only very recently Nolen and Schiffer (4) have reestablished the importance of Coulomb energy data for obtaining information about nuclear sizes. They showed that the Coulomb displacement energy between any nuclear state, a ground state for example, and its analogue state in the neighboring proton-rich isobar depends strongly on the radial distribution of the neutron excess in the ground state. Thus, experimental Coulomb displacement energies, now known even in heavy nuclei (5), present a powerful tool for determining distributions of neutrons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. BETHE, H. A., and BACHER, R. F., Rev. Mod. Phys. 8, 82 (1936); BETHE, H. A., Phys. Rev. 54, 436 (1938).

    Google Scholar 

  2. ELTON, L. R. B., Nuclear Radii, Landolt-Börnstein, New Series Vol. 1/4 (Springer, Berlin, Heidelberg, New York, 1967 ) p. 1.

    Google Scholar 

  3. HOFSTADTER, R., and COLLARD, H. R., ibid, p. 21.

    Google Scholar 

  4. NOLEN, J. A., and SCHIFFER, J. P., Ann. Rev. Nucl. Sci. 19, 471 (1969).

    Google Scholar 

  5. ANDERSON, J. D., WONG, C., and MC CLURE, J. W., Phys. Rev. 138, 8615 (1965).

    Google Scholar 

  6. AUERBACH, N., HUFNER, J., KERMAN, A. K., and SHAKIN. C. M., Phys. Rev. Letters 23, 484 (1969).

    Article  ADS  Google Scholar 

  7. AUERBACH, E. H., KAHANA S., and WENESER, J., Phys. Res. Letters 23, 1253 (1969).

    Article  ADS  Google Scholar 

  8. AUERBACH, E. H., KAHANA, S., SCOTT, C. K., and WENESER, J., Phys. Rev. 188, 1747 (1969).

    Article  ADS  Google Scholar 

  9. WONG, C. W., Nucl. Phys. A151, 323 (1970).

    Article  Google Scholar 

  10. DAMGAARD, J., SCOTT, C. K., and OSNES, E., Nucl. Phys. A154, 12 (1970).

    Article  Google Scholar 

  11. NEGELE, J. W., Nucl. Phys. A165, 305 (1971).

    Article  Google Scholar 

  12. Nguyen Van Giai, VAUTHERIN, D., VENERONI, M., and BRINK, D. M., (to be published).

    Google Scholar 

  13. JANECKE, J., (to be published).

    Google Scholar 

  14. DRAAYER, J. P., and Janecke, J., (to be published).

    Google Scholar 

  15. ELTON, L. R. B., Nucl. Phys. 5, 173 (1958) and 8, 396 (1958); Meyer-BerkhouT,U., et al., Ann. Phys. (N.Y.) 8,-119 (1959).

    Google Scholar 

  16. RHODES, P., Proc. Roy. Soc. (London) A204, 396 (1950).

    Google Scholar 

  17. WILSON, A. H., The Theory of Metals ( Cambridge, At the University Press, 1958 ) p. 330.

    Google Scholar 

  18. JANECKE, J., Chapter 8 in Isospin in Nuclear Physics, edited by D. H. Wilkinson, ( North-Holland, Amsterdam 1969 ).

    Google Scholar 

  19. BROWN, G. E., and GREEN, A. M., Nucl. Phys. 75, 401 (1966).

    Article  Google Scholar 

  20. ROST, E., Phys. Letters 21, 87 (1966).

    Article  ADS  Google Scholar 

  21. GERACE, W. J., and GREEN, A. M., Nucl. Phys. A93, 110 (1967).

    Article  Google Scholar 

  22. AGASSI, D., GILLET, V., and LUMBROSO, A., Nucl. Phys. A130, 129 (1969).

    Article  Google Scholar 

  23. VERGADOS, J. V., Phys. Letters 34B, 458 (1971).

    ADS  Google Scholar 

  24. MYERS, W. D., Phys. Letters 30B, 451 (1969).

    Article  ADS  Google Scholar 

  25. MYERS, W. D., and SWIATECKI, W. J., Ann. Phys. 55, 395 (1969).

    Article  ADS  Google Scholar 

  26. BERTSCH, G. F., Phys. Letters 26B, 130 (1968).

    ADS  Google Scholar 

  27. STELSON, P. H., and GRODZINS, L., Nucl. Data Tables Al, 21 (1965).

    Google Scholar 

  28. LöBNER, K. E. G., Vetter, M.,and Honig, V., Nucl. Data Tables A7, 495 (1970).

    ADS  Google Scholar 

  29. LANE, A. M., Nucl. Phys. 35, 676 (1962).

    Article  Google Scholar 

  30. PEREY, F. G., and SCHIFFER, J. P., Phys. Rev. Letters 17, 324 (1966).

    Article  ADS  Google Scholar 

  31. WU, C. S., International Nuclear Physics Conference, Gatlinburg (1966) p. 409.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Publishing Company Ltd

About this paper

Cite this paper

Janecke, J. (1972). Coulomb Energies and Nuclear Shapes. In: Sanders, J.H., Wapstra, A.H. (eds) Atomic Masses and Fundamental Constants 4. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7876-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7876-1_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7878-5

  • Online ISBN: 978-1-4684-7876-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics