Skip to main content

Arterial Compliance — Physiological Viewpoint

  • Chapter
Vascular Dynamics

Part of the book series: NATO ASI Series ((ASIAS,volume 166))

Abstract

The aorta and large arteries are generally thought of as conduit vessels whose main function is to provide a path for blood to reach the periphery. However, it has long been recognized that the cardiovascular system functions in more complex fashion than merely as a simple resistance to blood flow. This is evident because the pressure and flow curves are not simple ratios. Thus, any realistic representation of vascular properties must account for the compliance properties of the vasculature (Frank, 1926). One clear manifestation of this compliance is the buffering provided by the large arteries that converts the intermittent flow from the left ventricle to a more continuous peripheral flow. This buffering role is the underpinning of the original and subsequent Windkessel models of the circulation (Beneken, 1972; Burattini et al., 1987; Frank, 1926; Westerhof et al., 1971).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Avolio, A.P., Chen, S.G., Wang, R.P., Zhang, C.Z., Li, M.F., and O’Rourke, M.F., 1983, Effects of aging on changing arterial compliance and left ventricular load in a northern Chinese urban community. Circulation, 68: 50.

    Article  PubMed  CAS  Google Scholar 

  • Avolio, A.P., Deng, F.Q., Li W.Q., Luo, Y.F., Huang, Z.D., Xing, L.F., and O’Rourke, M.F., 1985, Effects of aging on arterial distensibility in populations with high and low prevalence of hypertension: comparison between urban and rural communities in China. Circulation, 71: 202.

    Article  PubMed  CAS  Google Scholar 

  • Babalis, D., Levy, B.I., Azancott, I., Masquet, C., and Beaufils P., 1984, Ventricular function and arterial compliance in patients with congestive cardiomyopathy. Int. J. Cardiology, 5: 361.

    Article  CAS  Google Scholar 

  • Beneken J. E. W., 1972, Some computer models in cardiovascular research. in: “Cardiovascular Fluid Dynamics,” D.H. Bergel, ed., Pergamon Press New York, N.Y., 173.

    Google Scholar 

  • Bourgeois, M.J., Gilbert, B.K., Donald, D.E., and Wood, E.H., 1974, Characteristics of aortic diastolic pressure decay with application to the continuous monitoring of changes in peripheral vascular resistance. Circ Res, 35: 56.

    Article  PubMed  CAS  Google Scholar 

  • Burattini, R., Gnudi G., Westerhof N., and Fioretti S., 1987, Total systemic arterial compliance and aortic characteristic impedance in the dog as a function of pressure: A model based study. Comp. and Biomed. Res., 20: 154.

    Article  CAS  Google Scholar 

  • Campbell K.B., Ringo, J.A., Klavano, P.A., Robinette, J.D., and Alexander, J.E., 1985, Aortic bulb-aortic orifice hemodynamics in left ventricle-systemic arterial interaction. Am. J. Physiol., 248: H132.

    PubMed  CAS  Google Scholar 

  • Child, A.H., Dorrance D.E., Jay B., Pope, F.M., Jones, R.B., and Gosling, R.G., 1981, Aortic compliance in connective tissue disorders affecting the eye. Ophthalmol. Pediatric Genet., 1: 59.

    Article  Google Scholar 

  • Conroy, M.F., 1969, Estimation of aortic distensibility and instantaneous left ventricular volume in living man. Bull. Math. Biophysics, 31: 93.

    Article  CAS  Google Scholar 

  • Conroy, M.F., 1971, In-vivo estimations of the nonlinear pressure-volume relationship of the aorta and instantaneous left ventricular volume. Bull. Math. Biophysics., 32: 151.

    Google Scholar 

  • Cope, F.W., 1961, A method for the computation of aortic distensibility in the living human patient and its use for the determination of the aortic effects of aging, drugs and exercise. Bull. Math. Biophysics, 23: 337.

    Article  Google Scholar 

  • Cope, F.W., 1960, An elastic reservoir theory of the human systemic arterial system using current data on aortic elasticity. Bull. Math Biophysics, 22: 19.

    Article  Google Scholar 

  • Defares, J.G., and Van Der Waal, H.J., 1969, A method for the determination of systemic arterial compliance in man. Acta. Physiol. Pharmacol. Neth., 15: 329.

    CAS  Google Scholar 

  • Defares, J.G., and Van Der Waal, H.J., 1973, Theory of the measurement of arterial compliance in humans. Bull. Math. Biology, 35: 237.

    CAS  Google Scholar 

  • Deswysen, B., Chalier A.A., and Gevers, M., 1980, Quantitative evaluation of the systemic arterial bed by parameter estimation of a simple model. Med. & Biol. Eng. Comput., 18: 153.

    Article  CAS  Google Scholar 

  • Dujardin, J.P.L., and Scott, D.L., 1980, The dynamic arterial pressure-flow relationship and total arterial compliance in spontaneously hypertensive and normotensive rats, in: “Cardiovascular System Dynamics,” T. Kenner. R., Busse, and H. Hinghofer-Szalkay. eds., Plenum Press, New York, pp 199.

    Google Scholar 

  • Frank, O., 1926, Die Theorie der Pulswellen. Zeitschrift fur Biologie, 85: 91.

    Google Scholar 

  • Goldwyn, R.M., and Watt, T.B., 1967, Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans., BME, 14: 11.

    Article  Google Scholar 

  • Guyton, A.C., Venous return. 1963, in: “Handbook of Physiology,” Sec. 2, Vol. 2, V.F. Hamilton and P. Dow, eds., American Physiological Society, Washington D.C., pp. 1099.

    Google Scholar 

  • Guyton, A.C., Armstrong, G.G., and Chipley, P.L., 1956, Pressure volume curves of arterial and venous systems in live dogs. Am. J. Physiol., 184: 253.

    PubMed  CAS  Google Scholar 

  • Handler, C.E., Child, A., Light, N.D., and Dorrance, D.E., 1985, Mitral valve prolapse, aortic compliance, and skin collagen in joint hypermobility syndrome. Br. Heart. J., 54: 501.

    Article  PubMed  CAS  Google Scholar 

  • Hardy, H. H., and Collins, R. E., 1982, On the pressure-volume relationship in circulatory elements. Med. & Biol. Eng. Comput., 20: 565.

    Article  CAS  Google Scholar 

  • Iriuchijima, J., Kumazawa A., and Kawakami, K., 1971, Measurement of aortic compliance in vivo. Jap. Heart. J., 12: 486.

    Article  PubMed  CAS  Google Scholar 

  • Latson, T.W., Huneter, W.C., Katoh, N. and Sagawa, K., 1988, Effect of nitroglycerin on aortic impedance, diameter, and pulse-wave velocity. Circ. Res., 62: 884.

    Article  PubMed  CAS  Google Scholar 

  • Lee, R.W., Lancaster, L.D., Gay, R.G., Paquin,M., and Goldman, S., 1988, Use of acetylcholine to measure total vascular pressure-volume relationship in dogs. Am. J. Physiol., 254: H115.

    CAS  Google Scholar 

  • Levy, B., Birkui, P., and Saumont, E., 1978, Elasticity modulus of the ascending aorta and systemic arterial compliance in dog. INSERM, 78: 141.

    Google Scholar 

  • Levy, B.I., Benessiano, J., Poitevin, P., Lukin, L., and Safar, M.E., 1985, Systemic arterial compliance in normotensive and hypertensive rats. J. Cardiovasc. Pharmacol.; 7: S28.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Z., Brin, K.P., and Yin, F.C.P., 1986, Estimation of total arterial compliance: an improved method and evaluation of current methods. Am. J. Physiol., 251: H588.

    PubMed  CAS  Google Scholar 

  • Messerli, F.H., Frohlich, E.D., and Ventura, H.O., 1985, Arterial compliance in essential hypertension. J. Cardiovasc. Pharntacol., 7: S33.

    Article  Google Scholar 

  • Neil-Dwyer, G., Child, A.H., Dorrance, D.E., Pope, F.M., and Bartlett, J. 1983, Aortic compliance in patients with ruptured intracranial aneurysms. Lancet, 939.

    Google Scholar 

  • Randall, O.S., van den Bos., G.C., and Westerhof, N., 1984, Systemic compliance: does it play a role in the genesis of essential hypertension? Cardiovasc. Res., 18: 455.

    CAS  Google Scholar 

  • Remington, J.W., Nobach, C.B., Hamilton, W.F., and Gold, J.J., 1948, Volume elasticity characteristics of the human aorta and the prediction of the stroke volume from the pressure pulse. Am. J. Physiol., 153: 298.

    PubMed  CAS  Google Scholar 

  • Shapiro, A.H., 1977, Steady flow in collapsible tubes. J. Biomech. Eng. Trans. of ASME., 99: 126.

    Article  Google Scholar 

  • Shoukas A.A., and Sagawa, K., 1973, Control of total systemic vascular capacity by the carotid sinus baroreceptor reflex. Circ. Res., 33: 22.

    Article  PubMed  CAS  Google Scholar 

  • Shoukas, A., and Sagawa, K., 1971, Total systemic vascular compliance measured as incremental volume-pressure ratio. Circ. Res., 28: 277.

    Article  PubMed  CAS  Google Scholar 

  • Simon, A.C., Safar, M.E., Levenson, J.A., London, M., Levy, B.I., and Chau, N.P., 1979, An evaluation of large arteries compliance in man. Am. J. Physiol., 237: H550.

    PubMed  CAS  Google Scholar 

  • Simon, A.C., Safar, M.E., Levenson, J.A., and Levy, B.I., 1979, Systolic hypertension: hemodynamic mechanism and choice of antihypertensive treatment. Am. J. Cardiol., 44: 505.

    Article  PubMed  CAS  Google Scholar 

  • Smiseth, O.A., Manyari, D.E., Lima, J.A., Scott-Douglas, N.W., Kingma, I., Smith, E.R., and Tyberg, J.V., 1987, Modulation of vascular capacitance by angiotensin and nitroprusside: a mechanism of changes in pericardial pressure. Circulation, 76: 875.

    Article  PubMed  CAS  Google Scholar 

  • Ting, C.E., Brin, K.P., Lin, S.J., Wang, S.P., Chang, M.S., Chiang, B.N., and Yin, F.C.P., 1986, Arterial Hemodynamics in Human Hypertension. J. Clin. Invest., 78: 1462.

    Google Scholar 

  • Toorop, G.P., Westerhof, N., and Elzinga, G., 1987, Beat-to-beat estimation of peripheral resistance and arterial compliance during pressure transients. Am. J. Physiol., 252: H1275.

    PubMed  CAS  Google Scholar 

  • Ventura, H.F.H., Messerli, W., Oigman, D.H., Suarex, G.R., Dreslinski, F.G., Dunn, E., and Reisin, E.D., Frohlich, 1984, Impaired systemic arterial compliance in borderline hypertension. Am. Heart J. 108:.

    Google Scholar 

  • Westerhof, N., Elzinga, G., and Sipkema, P., 1971, An artificial arterial system for pumping hearts, J. Appl. Physiol., 31: 776.

    PubMed  CAS  Google Scholar 

  • Wille, H.H., Sauer, G., Tebbe, U., Neuhaus, K.L., and Kreuzer, H., 1980, Nitroglycerin and afterload: effects of aortic compliance and capacity of the Windkessel. Eur. Heart J., 1: 445.

    PubMed  CAS  Google Scholar 

  • Yin, F.C.P., Guzman, P.A., Brin, K.P., Maughan, W.L., Brinker, J.A., Traill, T.A., Weiss, J.L., and Weisfeldt, M.L., 1983, Effect of nitroprusside on hydraulic vascular load on the right and left ventricle of patients with heart failure. Circulation, 67: 1330.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Yin, F.C.P., Liu, Z. (1989). Arterial Compliance — Physiological Viewpoint. In: Westerhof, N., Gross, D.R. (eds) Vascular Dynamics. NATO ASI Series, vol 166. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7856-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7856-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7858-7

  • Online ISBN: 978-1-4684-7856-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics