Skip to main content

Models of Biological Pattern Formation and Their Application to the Early Development of Drosophila

  • Chapter

Part of the book series: NATO ASI Series ((NSSB,volume 270))

Abstract

The complexity of a higher organism indicates that very many pattern forming reactions are at work that are coupled to each other in such a way that the final pattern can be generated with a high degree of reproducibility. Investigations of early development in Drosophila have provided us with much information about the molecular machinery on which development is based. About ten years ago, I proposed a model for pattern formation in early insect embryogenesis (Meinhardt, 1977). This model was based on a single morphogen gradient with a high point at the posterior pole of the egg. The gradient was assumed to be generated by short range auto catalysis and long range inhibition (Gierer and Meinhardt, 1972). This model was able to account for most of the experimental observations available at that time. More recently, this model of positional information has been complemented by a model for the hierarchical activation of gap-, pair rule and segment polarity genes (Meinhardt, 1985, 1986). In the meantime many additional genetic and molecular data have become available for Drosophila. Much of this new data supports the basic stipulations of these models, while some of it suggests modifications of these models. In this paper I will mention very briefly the basic ingredients of the models with reference to the Drosophila system and show of how these elements can be linked to obtain a reproducible pattern formation. This paper will be partially based on arguments previously put forward (Meinhardt, 1985,1986) and more recently updated (Meinhardt, 1988).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker, N.E. (1987). Molecular cloning of sequences from wingless a segment polarity gene in Drosophila the spatial distribution of a transcript in embryos. Embo J, 6, 1765–1774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker, N.E. (1988). Localization of transcripts from the wingless gene in whole Drosophila embryos. Development 103, 289–298.

    PubMed  CAS  Google Scholar 

  • Bohn, H. (1970). Interkalare Regeneration und segmentale Gradienten bei den Extremitäten von Leucophaea-Larven (Blattari). I. Femur und Tibia. Wilhelm Roux’ Archiv 165, 303–341.

    Google Scholar 

  • Bohn, H. (1974). Extent and properties of the regeneration field in the larval legs of cockroaches (Leucophaea maderae). I. Extirpation experiments. J. Embryol. exp. Morph. Vol.31, 3, 557–572.

    PubMed  CAS  Google Scholar 

  • Bull, A.L. (1966). Bicaudal, a Genetic Factor which Affects the Polarity of the Embryo in Drosophila melanogaster. J. Exp. Zool. 161, 221–242.

    Article  Google Scholar 

  • Carroll, S.B. and Scott, M.P. (1986). Zygotically active genes that affect the spatial expression of the fushi tarazu segmentation gene during early Drosophila embryogenesis. Cell, 45, 113–126.

    Article  CAS  PubMed  Google Scholar 

  • Driever, W. and Nüsslein-Volhard, C. (1989). The bicoid protein is a positive regulator of hunchback transcription in the early Drosophila embryo. Nature 337, 138–143.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, B.A., Schubiger, G. and Odell, G.M. (1989). A genetic switch, based on negative regulation, sharpens stripes in Drosophila ernbryos. Dev. Genetics 10, 124–142.

    Article  CAS  Google Scholar 

  • Garcia-Bellido, A., Ripoll, P. and Morata, G. (1973). Developmental compartmentalization of the wing disk of Drosophila. Nature New Biol. 245, 251–253.

    Article  CAS  PubMed  Google Scholar 

  • Gaul, U. and Jackie, H. (1987). Pole region-dependent repression of the Drosophila gap gene Krüppel by maternal gene products. Cell 51, 549–555.

    Article  CAS  PubMed  Google Scholar 

  • Gierer, A. (1981). Generation of biological patterns and form: Some physical, mathematical, and logical aspects. Prog. Biophys. molec. Biol. 37, 1–47.

    CAS  Google Scholar 

  • Gierer, A. and Meinhardt, H. (1972). A theory of biological pattern formation. Kybernetik 12, 30–39.

    Article  CAS  PubMed  Google Scholar 

  • Gierer, A. and Meinhardt, H. (1974). Biological pattern formation involving lateral inhibition. Lectures on Mathematics in the Life Sciences 7, 163–183.

    Google Scholar 

  • Goodwin, B.C. and Kauffman, S.A. (1990). Spatial harmonics and pattern specification in early Drosophila development. 1. Bifurcation sequences and gene expression. J. theor. Biol. 144, 303–319.

    Article  CAS  PubMed  Google Scholar 

  • Goto, T., Macdonald, P. and Maniatis, T. (1989). Early and late periodic patterns of even skipped expression are controlled by distinct regulatory elements that respond to different spatial cues. Cell, 57, 413–422.

    Article  CAS  PubMed  Google Scholar 

  • Hafen, E., Kuroiwa, A. and Gehring, W.J. (1984). Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryonic development. Cell, 37, 833–842.

    Article  CAS  PubMed  Google Scholar 

  • Harding, K., Hoey, T., Warrior, R. and Levine, M. (1989). Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. Embo J, 8, 1205–1212.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harding, K., Rushlow, C., Doyle, H.J., Hoey, T. and Levine, M. (1986). Cross-regulatory interactions among pair-rule genes in Drosophila. Science 233, 953–959.

    Article  CAS  PubMed  Google Scholar 

  • Hiromi, Y. and Gehring, W.J. (1987). Regulation and function of the Drosophila segmentation gene fushi tarazu. Cell 50, 963–974.

    Article  CAS  PubMed  Google Scholar 

  • Hooper, J.E. and Scott, M.P. (1989). The Drosophila patched gene encodes a putative membrane protein required for segmental patterning. Cell 59, 751–765.

    Article  CAS  PubMed  Google Scholar 

  • Howard, K. and Ingham, P. (1986). Regulatory Interactions between the Segmentation Genes fushi tarazu, hairy, and engrailed in the Drosophila Blastoderm. Cell 44, 949–957.

    Article  CAS  PubMed  Google Scholar 

  • Howard, K., Ingham, P. and Rushlow, C. (1988). Region-specific alleles of the Drosophila segmentation gene hairy. Genes & Development 2, 1037–1046.

    Article  CAS  Google Scholar 

  • Howard, K., Ingham, P. and Rushlow, C. (1988). Region-specific alleles of the Drosophila segmentation gene hairy. Genes Dev, 2, 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  • Ingham, P. (1988). The molecular genetics of embryonic pattern formation in Drosophila. Nature 335, 25–34.

    Article  CAS  PubMed  Google Scholar 

  • Kalthoff, K. and Sander, K. (1968). Der Entwicklungsgang der Missbildung “Doppelabdomen” im partiell UV-bestrahlten Ei von Smittia parthenogenetica. Wilhelm Roux’ Archiv 161, 129–146.

    Google Scholar 

  • Knipple, D.C., Scifert, E., Rosenberg, U.B., Preiss, A. and Jackie, H. (1985). Spatial and temporal pattern of Krüppel gene expression in early Drosophila development. Nature 317, 40 – 44.

    Article  CAS  PubMed  Google Scholar 

  • Kornberg, T.I., Siden, I., O’Farell, P. and Simon, M. (1985). The engrailed locus of Drosophila: In-situ hybridisation of transcripts reveals compartment-specific expression. Cell 40, 45–53.

    Article  CAS  PubMed  Google Scholar 

  • Lacalli, T.C. (1990). Modeling the Drosophila pair-rule pattern by reaction diffusion — gap input and pattern control in a 4- morphogen system. J Theor Bioll 44, 171–194.

    Article  Google Scholar 

  • Lacalli, T.C., Wilkinson, D.A. and Harrison, L.G. (1988). Theoretical aspects of stripe formation in relation to Drosophila segmentation. Development 104, 105–113.

    PubMed  CAS  Google Scholar 

  • Lohs-Schardin, M., Cremer, C. and Nüsslein-Volhard, C. (1979). A fate map for the larval epidermis of Drosophila melanogaster: Localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Dev. Biol. 73, 239 – 255.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Arias, A., Baker, N.E. and Ingham, P.W. (1988). Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development 103, 151–170.

    Google Scholar 

  • Martinez-Arias, A. and Lawrence, P.A. (1985). Parasegments and compartments in the Drosophila embryo. Nature 313, 639–642.

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt, H. (1976). Morphogenesis of lines and nets. Differentiation 6, 117–123.

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt, H. (1977). A model of pattern formation in insect embryogenesis. J. Cell Sci. 23, 117–139.

    Google Scholar 

  • Meinhardt, H. (1978). Space-dependent Cell Determination under the control of a morphogen gradient. J. theor. Biol.74, 307–321.

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt, H. (1980). Cooperation of Compartments for the Generation of Positional Information. Z. Naturiorsch. 35c, 1086–1091.

    Article  Google Scholar 

  • Meinhardt, H. (1982). Models of biological pattern formation. Academic Press, London.

    Google Scholar 

  • Meinhardt, H. (1982). The Role of Compartmentalization in the activation of particular control genes and in the generation of proximo- distal positional information in appendages. Amer.Zool. 22, 209–220.

    Article  Google Scholar 

  • Meinhardt, H. (1983a). A boundary model for pattern formation in vertebrate limbs. J. Embryol exp. Morph. 76, 115–137.

    PubMed  CAS  Google Scholar 

  • Meinhardt, H. (1983b). Cell determination boundaries as organizing regions for secondary embryonic fields. Devi. Biol 96, 375–385.

    Article  CAS  Google Scholar 

  • Meinhardt, H. (1984). Models for positional signalling, the threefold subdivision of segments and the pigmentation pattern of molluscs. J. Embryol. exp. Morph. 83,(Supplement) 289–311.

    PubMed  Google Scholar 

  • Meinhardt, H. (1985). Mechanisms of Pattern Formation During Development of Higher Organisms: A Hierarchial Solution of a Complex Problem. Ber. Bunsenges. Phys. Chem. 89, 691–699.

    Article  Google Scholar 

  • Meinhardt, H. (1986). Hierarchical inductions of cell states: a model for segmentation in Drosophila. J. Cell Sci. Suppl.4, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Meinhardt, H. (1986). The threefold subdivision of segments and the initiation of legs and wings in insects. Trends Genetics 2, 36–41.

    Article  Google Scholar 

  • Meinhardt, H. (1988). Models for maternally supplied positional information and the activation of segmentation genes in Drosophila embryogenesis. In: Development 104, (Supplement), 95–110.

    Google Scholar 

  • Meinhardt, H. and Gierer, A. (1980). Generation and regeneration of sequences of structures during morphogenesis. J. theor. Biol. 85, 429–450.

    Article  CAS  PubMed  Google Scholar 

  • Nagorcka, B.N. (1989). Wavelike isomorphic prepatterns in development. J. Theoretical Biol. 137, 127–162.

    Article  CAS  Google Scholar 

  • Nakano, Y., Guerrero, L, Hidalgo, A., Taylor, A., Whittle, J.R.S. and Ingham, P.W. (1989). A protein with several possible membrane-spanning domains encoded by the Drosophila segment polarity gene patched. Nature 341, 508–513.

    Article  CAS  PubMed  Google Scholar 

  • Nüsslein-Volhard, C. (1977). Genetic analysis of pattern formation in the embryo of Drosophila melanogaster. Wilhelm Roux’s Archives 183, 249–268.

    Article  Google Scholar 

  • Nüsslein-Volhard, C., Frohnhöfer, H.G. and Lehmann, R. (1987). Determination of anteroposterior polarity in Drosophila. Science 238, 1675–1681.

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard, C. and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila. Nature 287, 795–801.

    Article  PubMed  Google Scholar 

  • Nüsslein-Volhard, C., Wieschaus, E. and Kluding, H. (1984). Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. I. Zygotic loci on the second chromosome. Roux’s Arch. Dev. Biol. 183, 267–282.

    Article  Google Scholar 

  • Pankratz, E., Scifert, E., Gerwin, N., Billi, B., Nauber, N. and Jackie, H. (1990). Gradients of Krüppel and knirps gene products direkt pair rule gene stripe patterning in the posterior regions of the Drosophila embryo. Cell, 61, 309–316.

    Article  CAS  PubMed  Google Scholar 

  • Pankratz, M.J., Jackie, H., Scifert, E. and Hoch, M. (1989). Krüppel requirement for knirps enhancement reflects overlapping gap gene activities in the Drosophila embryo. Nature 341, 337–340.

    Article  CAS  PubMed  Google Scholar 

  • Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D. and Nüsse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell 50, 649–657.

    Article  CAS  PubMed  Google Scholar 

  • Sander, K. (1959). Analyse des ooplasmatischen Reaktionssystems von Euscelis plebejus Fall. (Cicadina) durch Isolieren und Kombinieren von Keimteilen. I. Mitt.: Die Differenzierungsleistungen vorderer und hinterer Eiteile. Wilhelm Roux’ Archiv 151, 430–497.

    Article  Google Scholar 

  • Sander, K. (1960). Analyse des ooplasmatischen Reaktionssystems von Euscelis Plebejus Fall (Cicadina) durch Isolieren und Kombinieren von Keimteilen. IL Mitteilung: Die Differenzierungsleistungen nach Verlagern von Hinterpolmaterial. Wilhelm Roux’ Archiv 151, 660–707.

    Article  Google Scholar 

  • Sander, K. (1976). Specification of the basic body pattern in insect embryogenesis. Adv. Ins. Physiol.12, 125–238.

    Article  Google Scholar 

  • Sullivan, W. (1987). Independence of fushi tarazu expression with respect to cellular density in Drosophila embryos. Nature 327, 164–167.

    Article  CAS  PubMed  Google Scholar 

  • Tautz, D., Lehmann, R., Schnuerch, H., Schuh, R., Scifert, E., Kienlin, A., Jones, K. and Jackie, H. (1987). Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature 327, 383–389.

    Article  CAS  Google Scholar 

  • Tautz, D., Tautz, C., Webb, D. and Dover, G.A. (1987). Evolutionary divergence of promoters and spacers in the rDNA family of four Drosophila species. Implications for molecular coevolution in multigene families. J. Mol. Biol. 195, 525–542.

    Article  CAS  PubMed  Google Scholar 

  • Treisman, J. and Desplan, C. (1989). The products of the Drosophila gap genes hunchback and Krüppel bind to the hunchback promoters. Nature 341, 335–337.

    Article  CAS  PubMed  Google Scholar 

  • Turing, A. (1952). The chemical basis of morphogenesis. Phil. Trans. B. 237, 37–72.

    Article  Google Scholar 

  • Wolpert, L. (1969). Positional information and the spatial pattern of cellular differentiation. J. theoret. Biol. 25, 1–47.

    Article  CAS  Google Scholar 

  • Yajima, H. (1960). Studies on embryonic determination of the harlequin-fly, Chironomous dorsalis. J. Embryol. exp. Morph. 8, 198–215.

    PubMed  CAS  Google Scholar 

  • van der Meer, J.M. and Miyamoto, D.M. (1984). The specification of metameric order in the insect Callosobruchus maculatus Fabr. (Coleoptera). II. The effects of temporary constriction on segment number. Roux’s Arch Dev Biol 193, 326–338.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Meinhardt, H. (1991). Models of Biological Pattern Formation and Their Application to the Early Development of Drosophila. In: Mosekilde, E., Mosekilde, L. (eds) Complexity, Chaos, and Biological Evolution. NATO ASI Series, vol 270. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7847-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7847-1_22

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7849-5

  • Online ISBN: 978-1-4684-7847-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics