Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 270))

Abstract

Acetabularia is a single-celled alga that undergoes a characteristic pattern of morphogenesis to produce a giant cell of distinctive form. Because of its basic simplicity, this organism lends itself to experimental and theoretical studies of the components that make up the morphogenetic field, and their dynamic properties. A model of this field and a finite-element simulation of its behaviour are presented which show that spatial patterns generically similar to those observed in the alga arise naturally, suggesting that normal morphogenesis can be described as an attractor of a moving boundary process. The implications of this possibility in relation to morphogenesis in related species is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brachet, J. and Bonnotto, S. (1970), Biology of Acetabularia, Academic Press, London & New York.

    Google Scholar 

  • Brière, C. and Goodwin, B.C. (1988), Geometry and dynamics of tip morphogenesis in Acetabulana. J. theoret. Biol. 131, 461–475.

    Article  Google Scholar 

  • Cleland, R. (1971), Cell wall extension. Ann. Rev. Plant Physiol. 22, 197–222.

    Article  CAS  Google Scholar 

  • Cosgrove, D.J. (1983), Cell wall yield properties of growing tissues. Evaluation by in vitro stress relaxation. Plant Physiol. 78, 347–356.

    Article  Google Scholar 

  • Goodwin, B.C. (1989), Unicellular morphogenesis. In: Cell Shape: Determinants, Regulation and Regulatory Role (eds. W.D. Stein and F. Bronner), pp. 365–391.

    Chapter  Google Scholar 

  • Goodwin, B.C. (1990), Structuralism in Biology. In: Science Progress, Oxford (Blackwell) 74, 227–244.

    Google Scholar 

  • Goodwin, B.C., Brière, C. and O’Shea, P.S. (1987), Mechanisms underlying the formation of spatial structure in cells. In: “Spatial organization in eukaryotic microbes” (eds. R.K. Poole and A.PJ. Trinci), pp. 1–9.

    Google Scholar 

  • Goodwin, B.C., Skelton, J.C. and Kirk-Bell, S.M. (1983), Control of regeneration and morphogenesis by divalent actions in Acetabulana mediterranea. Planta 157, 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin, B.C. and Trainor, L.E.H. (1985), Morphogenese apicale et formation des verticiUes chez Acetabulana sous l’action d’un champ de contraintes régulé par le calcium, IV Séminaire de l’Ecole de Biologie Théorique, pp. 3045–315, Editions due CNRS, Paris.

    Google Scholar 

  • Green, P.B., Erickson, R.O. and Buggy, J. (1971), Metabolic and physical control of cell elongation rate. In vitro studies in Nitella. Plant Physiol. 47, 423–430.

    Google Scholar 

  • Green, P.B. (1987), Inheritance of pattern: analysis from phenotype to gene. Amer. Zool. 27, 657–673.

    Article  Google Scholar 

  • Green, P.B. (1989), Shoot morphogenesis, vegetative through floral, from a biophysical perspective. In: “Plant Reproduction: From Floral Induction to Pollination” (eds. E. Lord and G. Barrier), Am. Soc. Plant Physiol. Symp. Series, Vol. 1, pp. 58–75.

    Google Scholar 

  • Harrison, L.G. and Hillier, N.A. (1985), Quantitative control of Acetabulana morphogenesis by extracellular calcium: a test of kinetic theory. J. Theoret. Biol. 114, 177–192.

    Article  CAS  Google Scholar 

  • Kamiya, N. (1981), Physical and chemical basis of cytoplasmic streaming. Am. Rev. Plant Physiol. 32, 205–236.

    Article  CAS  Google Scholar 

  • Lockart, J.A. (1985), An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275.

    Article  Google Scholar 

  • Meinhardt, H. (1982), Models of Biological Pattern Formation, Academic Press, London.

    Google Scholar 

  • Menzel, D. and Elsner-Menzel, C. (1989), Induction of actin-based contraction in the siphonous green alga Acetabularia (Chlorophycea) by locally restricted calcium influx. Bot. Acta 102, 164–171.

    Article  CAS  Google Scholar 

  • Murray, J.D. (1989), Mathematical Biology, Springer-Verlag.

    Book  Google Scholar 

  • Nossal, R. (1988), On the elasticity of cytoskeletal networks. Biophys. J. 53, 349–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oster, G.F. and Odell, G.M. (1983), The mechanochemistry of cytogels. In: “Fronts, Interfaces and Patterns” (ed. A. Bishop), Amsterdam, North Holland, Elsevier Science Division.

    Google Scholar 

  • Puiseux-Dao, S. (1970), Acetabularia and Cell Biology, Logos Press Ltd.

    Google Scholar 

  • Turing, A.M. (1952), The Chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237, 37–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Goodwin, B.C., Brière, C. (1991). Generic Dynamics of Morphogenesis. In: Mosekilde, E., Mosekilde, L. (eds) Complexity, Chaos, and Biological Evolution. NATO ASI Series, vol 270. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7847-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7847-1_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7849-5

  • Online ISBN: 978-1-4684-7847-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics