Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 270))

Abstract

A model for the impulse transmission between nerve cells is presented. The model is compared with experiments on nerve cell bodies of the large land snail Helix pomatia. Synaptic input is simulated by equal-sized square current pulses applied at a constant rate. The output pattern consists of a mixture of spikes and dropouts, where the response fraction depends on stimulus strength and frequency in a non-trivial manner. In the periodic model, the output locks to the input at simple ratios (1:1, 2:1, 3:2, etc.) resulting in the fractal relation called the “Devil’s staircase” between response fraction and stimulation strength or rate. In the chaotic model the near-threshold behavior of the nerve cell is included, resulting in a breakdown of the staircase into a mixture of regions with regular behavior and regions with chaotic behavior. In the chaotic regions, the mean output frequency differs from the mean frequency of nearby regions. The behavior of this model is close to the behavior of the nerve cell. Coupling is mimicked by applying the output from one cell to another cell with the same model parameters. Even in very simple systems, the resulting output depends not only on the strength of the coupling, but also on the precise timing of the incoming impulses. The signal processing of a nerve cell is therefore not just a function of the mean firing frequency. It is a result of subtly timed mixtures of regular and chaotic firing patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmed, Z. & Connor, J. A. (1988). Calcium regulation by and buffer capacity of molluscan neurons during calcium transients. Cell Calcium.9, 57–69.

    Article  CAS  PubMed  Google Scholar 

  • Akaike, N., Lee, K. S. & Brown, A. M. (1978). The calcium current of Helix neuron. J. Gen. Physiol.71, 509–531.

    Article  CAS  PubMed  Google Scholar 

  • Bak, P., Bohr, T. & Jensen, M. H. (1985). Mode-locking and the transition to chaos in dissipative systems. Physica Scripta. T9, 50–58.

    Article  Google Scholar 

  • Benham, C. D., Bolton, T. B., Lang, R. J. & Takewaki, T. (1986). Calcium-activated potassium channels in single smooth muscle cells of rabbit jejunum and guinea-pig mesenteric artery. J. Physiol. 371, 45–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, D. A. & Griffith, W. H. (1983). Calcium-activated outward current in voltage-clamped hippocampal neurones of the guinea-pig. J. Physiol. 337, 287–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Colding-Jørgensen, M. (1977). Impulse dependent adaptation in Helix pomatia neurones: Effect of the impulse on the firing pattern. Acta physiol. scand. 101, 369–381.

    Article  PubMed  Google Scholar 

  • Colding-Jørgensen, M. (1983). A model for the firing pattern of a paced nerve cell. J. theor. Biol. 101, 541–568.

    Article  PubMed  Google Scholar 

  • Colding-Jørgensen, M. (1990). Fundamental properties of the action potential and repetitive activity in excitable membranes illustrated by a simple model. J.theor. Biol. 144, 37–67.

    Article  Google Scholar 

  • Colding-Jørgensen, M., Madsen, H. Ø., Bodholdt, B. & Mosekilde, E. (1990). A simple model for Ca -dependent oscillations in excitable cells. Proceedings of the 1990 European Simulation Multiconference, 630–635.

    Google Scholar 

  • Dissing, S., Nauntofte, B. & Sten-Knudsen, O. (1990). Spatial distribution of intracellular, free Ca+ in isolated parotid acini. Pflügers Arch, 417. 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Dupont, G. & Goldbeter, A. (1989). Theoretical insight into the origin of signal-induced calcium oscillations. In Cell to cell signalling: From experiments to theoretical models. Ed. A. Goldbeter. Academic Press, London. 461–474.

    Chapter  Google Scholar 

  • Glass, L., Guevara, M. R., Shrier, A. & Perez, R. (1983). Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica. 7D, 89–101.

    Google Scholar 

  • Gorman, A. L. F. & Thomas, M. V. (1980). Potassium conductance and internal calcium accumulation in a molluscan neurone. J.Physiol. 308, 287–313.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gorman, A. L. F., Levy, S., Nasi, E. & Tillotson, D. (1984). Intracellular calcium measured with calcium-sensitive micro-electrodes and arsenazo III in voltage-clamped Aplysia neurones. J.Physiol. 353, 127–142.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hodgkin, A. L. & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J.Physiol. 117, 500–544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lux, H. D. & Hofmeier, G. (1982). Properties of a calcium- and voltage-activated potassium current in Helix pomatia neurons. Pflügers Arch. 394, 61–69.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, G., Takahashi, N. & Hanyu, Y. (1987). Chaos, Phase Locking and Bifurcation in Normal Squid Axons. Proceedings of the NATO Advanced Research Workshop on Chaos in Biological Systems, Dec. 1986. Plenum Press, New York. 143–156.

    Google Scholar 

  • Ohnishi S. T. & Endo, M. (1981). The mechanism of gated calcium transport across biological membranes. Academic Press, New York.

    Google Scholar 

  • Rasmussen, H. & Barrett, P. Q. (1984). Calcium messenger system: An integrated view. Physiol. Rev. 64, 938–984.

    Article  PubMed  CAS  Google Scholar 

  • Schuster, H. G. (1988). Deterministic Chaos. An introduction. VCH Verlagsgesellshaft mbH. Weinham, Germany.

    Google Scholar 

  • Tuckwell, H. C., Wan, F. Y. M. & Wong, Y. S. (1984). The interspike interval of a cable model neuron with white noise input. Biol. Cybern. 49, 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Williams, D. A., Fogarty, K. E., Tsien, R. Y. & Fay, F. S. (1985). Calcium gradients in single smooth muscle cells revealed by the digital imaging microscope using Fura-2. Nature. 318, 558–561.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Colding-Jørgensen, M. (1991). Chaos in Coupled Nerve Cells. In: Mosekilde, E., Mosekilde, L. (eds) Complexity, Chaos, and Biological Evolution. NATO ASI Series, vol 270. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7847-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7847-1_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7849-5

  • Online ISBN: 978-1-4684-7847-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics