Skip to main content

The Krogh Cylinder Geometry is Not Appropriate for Modelling O2 Transport in Contracted Skeletal Muscle

  • Chapter
Oxygen Transport to Tissue—IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 159))

Abstract

Mathematical models of oxygen transport to tissue provide us with a quantitative means of assessing how each mass transport parameter affects oxygen delivery. These models thus play an important role as we attempt to determine what local control mechanises are responsible for matching the microvascular oxygen supply to the tissue’s metabolic needs. This is especially true in skeletal (and cardiac) muscle where the oxygen consumption rate increases dramatically from rest to exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baez, Silvio, (1977) Microcirculation, Ann. Rev. Physiol. 39: 391–415.

    Google Scholar 

  • Bourdeau-Martini, J., Odoroff, C. L. and Honig, C. R. (1974) Dual effect of oxygen on magnitude and uniformity of coronary intercapillary distance, Am. J. Physiol. 226 (4): 800–810.

    PubMed  CAS  Google Scholar 

  • Duling, B. R. and Klitzman, B. (1980) Local control of microvascular function: role in tissue oxygen supply. Ann. Rev. Physiol. 42: 373–382.

    Google Scholar 

  • Fletcher, J. E. (1978) Mathematical modeling of the micro-circulation. Math. Biosci. 38: 159–202.

    Google Scholar 

  • Folkow, B. and Halicka, H. D. (1068) A comparison between “red” and “white” muscle with respect to blood supply, capillary surface area and oxygen uptake during rest and exercise. Microvasc. Res. 1: 1–14.

    Google Scholar 

  • Fung, Y-C. (1977) “Rheology of Blood Vessesl” in Microcirculation, Volume 1, ( G. Kaley and B. M. Altura, Eds.) University Park Press, Baltimore, pp. 318–319.

    Google Scholar 

  • Gray, S. D., Carlsson, E. and Staub, N. C. (1967) Site of increased vascular resistance during isometric muscle contraction. Am. J. Physiol. 213 (3): 683–689.

    PubMed  CAS  Google Scholar 

  • Gray, S. D. and Renkin, E. M. (1978) Microvascular supply in relation to fibre metabolic type in mixed skeletal muscles of rabbits. Micro’asc. Res. 16: 406–425.

    Google Scholar 

  • Groan, A. C. and Plyley, M. J. (1973) “Oxygen transport in skeletal muscle: how many blood capillaries surround each fibre?” in Oxygen Transport to Tissue. (Eds. H. I. Bicher and D. F. Bruley ). Adv. Exper, Med. Bio. 37B: 911–916.

    Google Scholar 

  • Groan, A. C., Plyley, M. J. and Sutherland, G. (1976) “Oxygen transport in skeletal muscle: capillary geometry in longitudinal section.” in Oxygen Transport to Tissue. (Eds. J. Grote, D. Reneau, and G. Thews). Adv. Exper. Med. Biol. 75: 685–692.

    Google Scholar 

  • Grunewald, W. A. and Sowa, W. (1977) Capillary structures and 02 supply to tissue. An analysis with a digital diffusion model as applied to the skeletal muscle. Rev. Physiol. Biochem. Pharmacol. 77: 149–209.

    Google Scholar 

  • Hammersen, F. (1968) “The pattern of the terminal vascular bed and the ultrastructute of capillaries in skeletal muscle” in Oxygen Transport in Blood and Tissue. (Eds. D. W. Lubbers, U. C. Luft, G. Thews, and E. Witzleb ). Georg Theime Verlag, Stuttgart. pp. 184–197.

    Google Scholar 

  • Hill, A. V. (1928) The diffusion of oxygen and lactic acid through tissues. Proc. Roy. Soc. Ser. B. 104: 39–96.

    Google Scholar 

  • Johnson, P. C. (1977) The myogenic response and the micro- circulation (Landis Award Lecture). Microvasc. Res. 13: 1–18.

    Google Scholar 

  • Krogh, A. (1919a) The number and distribution of capillaries in muscles with calculation of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (tond.) 52: 409–415.

    CAS  Google Scholar 

  • Krogh, A. (1919b). The supply of oxygen to the tissues and the regulation of the capillary circulation. J. Physiol (lond.) 52: 457–474.

    CAS  Google Scholar 

  • Lubbers, D. W. (1980) “Tissue oxygen supply and critical oxygen pressure” in Oxygen Transport to Tissue. (Eds. A. G. B. Kovâch, E. Dora, M. Kessler, and I. A. Silver). Adv. Physiol. Sci. 25: 3–11.

    Google Scholar 

  • Murphy, M. E. and Johnson, P. C. (1975) Possible contribution of basement membrane to the structural rigidity of blood capillaries. Microvasc. Res. 9: 242–245.

    Google Scholar 

  • Nopanitaya, W., Aghajanian, J. G., and Gray, L. D. (1979). An imporved plastic mixture for corrosion casting of the gastrointestinal microvascular system. Scanning Electron Microscopy. 111: 751–755.

    Google Scholar 

  • Popel, A. S. (1978) Analysis of capillary-tissue diffusion in multicapillary systems. Math. Biosci. 39: 187–211.

    Article  Google Scholar 

  • Popel, A S. (1980a) “Mathematical modeling of convective and diffusive transport in the microcirculation.” in mathematics of Microcirculation Phenomena. (Eds. J. F. Gross, and A Popel). Raven Press, New York. pp. 63–88.

    Google Scholar 

  • Popel, A. S. (1980b) Oxygen diffusion from capillary layers with concurrent flow. Math. Biosci. 50: 171–193.

    Article  Google Scholar 

  • Potter, R. F., and Groan, A. C. (1980) Corrosion casts of the microvasculature in heart and skeletal muscle, studied by scanning electron microscopy (S.E.M.), presented at the 31st American Physiological Society Fall Meeting, Abstract No. 467.

    Google Scholar 

  • Salathe, E. P., Wang, T. C., and Gross, J. (1980) Mathematical analysis of oxygen transport to tissue. Math. Biosci. 51: 89–115.

    Article  Google Scholar 

  • Spalteholtz, W. (1888). Die Vertheilung der Blutgefasse in Muskel, Abh. Sachs. Ges. Eiss. Math. Phys. 14: 509–528.

    Google Scholar 

  • Stainsby, W. N. and Otis, A. B. (1964) Blood flow, blood oxygen tension, oxygen uptake and oxygen transport in skeletal muscle. Am. J. Physiol. 206 (4): 858–866.

    PubMed  CAS  Google Scholar 

  • Thews, G. (1952) Uber Die Mathematische Behandlung Physiologischer Diffusionsprozesse in Zylinderformigen Objekten. Acta Biotheoretic. 10: 105–137.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Ellis, C.G., Potter, R.F., Groom, A.C. (1983). The Krogh Cylinder Geometry is Not Appropriate for Modelling O2 Transport in Contracted Skeletal Muscle. In: Bicher, H.I., Bruley, D.F. (eds) Oxygen Transport to Tissue—IV. Advances in Experimental Medicine and Biology, vol 159. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7790-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7790-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7792-4

  • Online ISBN: 978-1-4684-7790-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics