Skip to main content

Delayed Recovery Following Hypothermic Arrest in Rabbit Myocardium

  • Chapter
Oxygen Transport to Tissue—IV

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 159))

  • 142 Accesses

Abstract

The purpose of this investigation was to determine the relationship between the duration of myocardial ischemia at 15°C and the time required for the myocardium to recover maximum contractile function following the ischemia. The isolated blood perfused rabbit heart was used as a model of myocardial ischemia.

Hearts frau 22 New Zealand white rabbits were divided into four groups. In Group I seven hearts were subjected to 15 minutes of ischemia at 15°C. In Group II five hearts were subjected to 30 minutes of ischemia at 15°C. In Groups III and IV the ischemia time was extended to 60 and 120 minutes, respectively. Following the ischemia each heart was reperfused at normothermia and papillary muscle contractility was measured and used as an index of myocardial recovery.

Hearts in Group I recovered their maximum contractile function after an average of 22.5 minutes. Those in Groups II, III, and IV were fully recovered after 31.7, 38.2, and 45.5 minutes, respectively. The study indicates that the time required for the maximum recovery of myocardial contractility following myocardial ischemia increases at a decreasing rate with an increase in the duration of the ischemia at 15°C.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angell, W. W., Rikkers, L., Dong, E. Organ Viability with Hypothermia. Journal Thoracic Cardiovascular Surgery 58: 619, 1969

    CAS  Google Scholar 

  2. Angell, W. W., Rikkers, L., Dong, E., and Shumway, N. E. Organ viability with hypothermia. J. Thorac Cardiovasc Surg. 58: 619, 1969.

    PubMed  CAS  Google Scholar 

  3. Apstein, C. S., Deckelbaum, L., Mueller, M., Hagopian, L., and W. B. Hood. Graded Global Ischemia and Reperfusion: Cardiac Function and Lactate Metabolism. Circulation 55: 864–872, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. Engelman, R. M., Chandra, R., Baumann, F. G., and Goldman, R. A. Myocardial reperfusion, a cause of ischemic injury during cardiopulmonary bypass. Surgery 80: 266, 1976.

    Google Scholar 

  5. Guilbeau, E. J., Fisk, R. L., Gordon, J. P., Edga, S. J., Switzer, A. J., and Moore, L. K. Improved isolated heart contractility with activated carbon hemoperfusion. Trans Am Soc Artif Intern Organs Vol.)XVI: 144, 1980.

    Google Scholar 

  6. Hearse, D. J. Oxygen deprivation and early myocardial contractile failure: A reassessment of the possible role of adenosine triphosphate. Am J. Cardiol 44: 1115, 1979.

    Article  PubMed  CAS  Google Scholar 

  7. Hess, M. L., Barnhart, G. R., Crute, S., Komwatana, P., Krause, S. and Greenfield, L. J. Mechanical and biochemical effects of transient myocardial ischemia. J. Surg. Res 26: 175, 1979.

    Article  PubMed  CAS  Google Scholar 

  8. Ino, T., Wakabayashi, A., Guilmette, E., Shinto, R. A., and Connolly, J. E. Effect of Hypothermic Anoxic Cardioplegia on Myocardial Contractility. The Annals of Thoracic Surgery 22: 25–29, 1976.

    Article  Google Scholar 

  9. Jennings, R. B. Relationship of accute ischemia to functional defects and irreversability. Circulation 53 (Suppl I): 26, 1976.

    Google Scholar 

  10. Jennings, R. B. and Ganote, C. E. Structural Changes in Myocardium During Acute Ischemia. Circulation Research Supplement III 34 & 35: 156–168, 1978.

    Google Scholar 

  11. Katz, A. M. Effect of ischemia on the contractile process of heart muscle. Am. J. Cardiol. 32: 456, 1973.

    Article  CAS  Google Scholar 

  12. Katz, A. M. and Hecht, H. H. The early “pump” failure of the ischenic heart. Am. J. Med 47: 497, 1969.

    Article  PubMed  CAS  Google Scholar 

  13. Malong, J. V., and Nelson, R. L. Myocardial preservation during cardiopulmonary bypass: An overview. J. Thorac Cardiovasc Surg. 68: 101, 1974.

    Google Scholar 

  14. McCallister, L. P., Trapukdi, S., and Neely, J. R. Morphometric observations on the effects of ischemia in the isolated pprfused rat heart. J. Mol. Cell Cardiol 11: 619, 1979.

    Article  CAS  Google Scholar 

  15. Reibel, and Rovetto Myocardial ATP Snynthesis and Mechanical Function Following Oxygen Deficiency. American Journal of Physiology 234: H620–H624, 1978.

    Google Scholar 

  16. Schaper, J., Hehrlein, F., Schlepper, M., and Theidmann, K. U. Ultrastructural alterations during ischemia and reperfusion in human hearts during cardiac surgery. J. Mol Cell Cardiol 9: 175, 1977.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma, G. P., Varley, K. G., Kim, S. W., Barwinsky, J., Cohen, M., and Dhalla, N. S. Alterations in energy metabolism and ultrastructure upon reperfusion of the ischenic myocardium after coronary occlusion. Am. J. Cardiol 36: 234, 1975.

    Article  CAS  Google Scholar 

  18. Shen, A. C. and Jennings, R. B. Myocardial Calcium and magnesium in acute ischemic injury. Am J. Pathol 67: 417, 1972.

    PubMed  CAS  Google Scholar 

  19. Steenberger, C., Deleeuw, G., Rich, T. and Williamson, J. R. Effects of adicosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41: 849, 1977.

    Article  Google Scholar 

  20. Trump, B. F., Mergner, W. J., Kahang, M. W. and Saladino, A. J. Studies on the subcellular pathophysiology of ischemia. Circulation 53 (Suppl I): 14, 1976.

    Google Scholar 

  21. Tsien, R. W. Possible effect of hydrogen ions in ischEnic myocardium. Circulation 53 (Suppl I): 14, 1976.

    Google Scholar 

  22. Vary, C. T., Angelakos, E. T. and Schaffer, S. W. Relationship Between Adenine Nucleotide Metabolism and Irreversible Ischemic Tissue Damage in Isolated Perfused Rat Heart. Circulation ResPArch 45: 218–219, 1979.

    Article  CAS  Google Scholar 

  23. Wakabayashi, A., Mihranian, M., Guilmette, E., Ito, Y. and Connolly, J. E. Functional Evaluation of Normothermic Intermittent Coronary Perfusion. The Journal of Thoracic and Cardiovascular Surgery 75: 20–24, 1978.

    Google Scholar 

  24. Whalen, D. A., Hamilton, D. G., Ganote, C. E. and Jennings, R. B. Effect of a transient period of ischemia on myocardial cells I. Effects on cell nolume regulation. Am J. Pathol 74: 381, 1974.

    PubMed  CAS  Google Scholar 

  25. Williamson, J. R., Schaffer, S. W., Ford, C., and Safer, B. Contribution of tissue acidosis to ischenic injury in the perfused rat heart. Circulation 53 (Suppl I): 3, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Plenum Press, New York

About this chapter

Cite this chapter

Fisk, R.L., Guilbeau, E.J., Edgar, S.J., Switzer, A.J., Moore, L.K. (1983). Delayed Recovery Following Hypothermic Arrest in Rabbit Myocardium. In: Bicher, H.I., Bruley, D.F. (eds) Oxygen Transport to Tissue—IV. Advances in Experimental Medicine and Biology, vol 159. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7790-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7790-0_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7792-4

  • Online ISBN: 978-1-4684-7790-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics