Skip to main content

Phosphate Depletion and Adenine Nucleotide Metabolism in Kidney and Liver

  • Chapter
Homeostasis of Phosphate and Other Minerals

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 103))

Abstract

Adenosine triphosphate (ATP) and other adenine nucleotides are the major energy coupling mechanism between the energy-producing and the energy-consuming systems in the cells. In a variety of diseased states, an altered metabolism of adenine nucleotides has been implicated in their pathogenesis. There are a few experimental model systems in which one can alter adenine nucleotide metabolism through a different mechanism and study the role of adenine nucleotides in cell functions as shown in Table 1 (1). Although studies using the first three models have been extensively performed, effects of phosphate depletion on the metabolism of adenosine triphosphate and other phosphate compounds in various organ systems have been studied rather to a lesser extent except in red cells, leukocytes, and platelets, where the relationship between a fall in plasma inorganic phosphate (Pi), a fall in tissue Pi, a decrease in tissue ATP, and some forms of cellular dysfunction have been demonstrated (2). Since a major portion of ATP is synthesized from ADP and Pi by oxidative phosphorylation in mitochondria, a deficiency of Pi will result in an impairment of ATP generation. Thus, various organ dysfunctions described in phosphate depletion have been attributed to a fall in the availability of energy-rich phosphate compounds such as ATP. Nevertheless, data on the changes in levels of adenine nucleotides and Pi in different organ systems are limited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farber, E.: ATP and cell integrity. Fed. Proc. 32:1534, 1973.

    Google Scholar 

  2. Knochel, J.P.: The pathophysiology and clinical characteristics of severe hypophosphatemia. Arch. Int. Med. 137: 203, 1977.

    Article  CAS  Google Scholar 

  3. Coburn, J.W., and Massry, S.G.: Changes in serum and urinary calcium during phosphate depletion: Studies on mechanisms. J. Clin. Invest. 1+9: 1073, 1970.

    Google Scholar 

  4. Troehler, U., Bonjour, J.P., and Fleisch, H.: Inorganic phosphate homeostasis. Renal adaptation to the dietary intake in intact and thyroparathyroidectomized rats. J. Clin. Invest. 57: 264, 1976.

    Article  CAS  Google Scholar 

  5. Steele, T.H., and DeLuca, H.F.: Influence of dietary phosphate on renal phosphate reabsorption in the parathyroidectomized rat. J. Clin. Invest. 57: 867, 1976.

    Article  PubMed  CAS  Google Scholar 

  6. Gold, L.M., Massry, S.G., Arieff, A.I., and Coburn, J.W.: Renal bicarbonate wasting during phosphate depldtion. A possible cause of altered acid-base homeostasis in hyperparathyroidism. J. Clin. Invest. 52: 2556, 1973.

    Article  PubMed  CAS  Google Scholar 

  7. Harter, H.R., Mercado, A., Rutherford, W.E., Rodriguez, H., Slatopolsky, E., and Klahr, S.: Effects of phosphate depletion and parathyroid hormone on renal glucose reabsorption. Am. J. Physiol. 227: 1422, 1974.

    PubMed  CAS  Google Scholar 

  8. Goldfarb, S., Westby, G.R., Goldberg, M., and Agus, Z.S.: Renal tubular effects of chronic phosphate depletion. J. Clin. Invest. 59: 770, 1977.

    Article  PubMed  CAS  Google Scholar 

  9. Gold, L.M., Massry, S.G., and Friedler, R.M.: Effect of phosphate depletion on renal tubular reabsorption of glucose. J. Lab. Clin. Med. 89: 554, 1977.

    PubMed  CAS  Google Scholar 

  10. Tanaka, Y., and DeLuca, H.F.: The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch. Biochem. Biophys. 154: 566, 1973.

    Article  PubMed  CAS  Google Scholar 

  11. Williamson, J.R., and Herczeg, B.E.: Assays of intermediates of the citric acid cycle and related compounds by fluorometric enzyme method; In, Lowenstein, J.M. 9ed.), Methods in Enzymology Vol 13, New York, Academic Press, p. 434, 1969.

    Google Scholar 

  12. Hems, D.A., and Brosnan, J.T.: Effects of ischaemia on content of metabolites in rat liver and kidney in vivo. Biochem. J. 120: 105, 1970.

    PubMed  CAS  Google Scholar 

  13. Hohorst, H.J., Kreutz, F.H., and Bücher, T.: Uber Metabolitge-halte und Metabolit-Konzentrationen in der Leber der Ratte. Biochem. Z. 332: 18, 1959.

    Google Scholar 

  14. Bucher, N.L.R., and Swaffield, M.M.: Nucleotide pools and (6–14C) orotic acid incorporation in early regenerating rat liver. Biochim. Biophys. Acta 129: 445, 1966.

    Article  PubMed  CAS  Google Scholar 

  15. Nagata, N., and Rasmussen, H.: Parathyroid hormone and renal cell metabolism. Biochemistry 7: 3728, 1968.

    Article  PubMed  CAS  Google Scholar 

  16. Schulz, D.W., Passonneau, J.V., and Lowry, 0.H.: An enzymatic method for the measurement of inorganic phosphate. Anal. Biochem. 19: 300, 1967.

    Article  PubMed  CAS  Google Scholar 

  17. Chen, P.S., Toribara, T.Y., and Warner, H.: Microdetermination of phosphorus. Anal. Chem. 28: 1756, 1956.

    Article  CAS  Google Scholar 

  18. Atkinson, D.E.: The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry 7: 4030, 1968.

    Article  PubMed  CAS  Google Scholar 

  19. Lichtman, M.A., Miller, D.R., and Freeman, R.B.: Erythrocyte adenosine triphosphate depletion during hypophosphatemia in a uremic•subject. New Engl. J. Med. 280: 240, 1969.

    CAS  Google Scholar 

  20. Lichtman, M.A., Miller, D.R., Cohen, J., and Waterhouse, C.: Reduced red cell glycolysis, 2,3-diphosphoglycerate and adenosine triphosphate concentration, and increased hemoglobin oxygen affinity caused by hypophosphatemia. Ann. Int. Med. 74: 562, 1971.

    PubMed  CAS  Google Scholar 

  21. Wu, R.: Rate-limiting factors in glycolysis and inorganic orthophosphate transport in rat liver and kidney slices. J. Biol. Chem. 240: 2373, 1965.

    PubMed  CAS  Google Scholar 

  22. DeLuca, H:F.: Recent advances in our understanding of the vitamin D endocrine system. J. Lab. Clin. Med. 87: 7, 1976.

    CAS  Google Scholar 

  23. Birge, S.J., and Haddad, J.G.: 25-hydroxycholecalciferol stimulation of muscle metabolism. J. Clin. Invest. 56: 1100, 1975.

    Article  PubMed  CAS  Google Scholar 

  24. Hughes, M.R., Brumbaugh, P.F., Haussler, M.R., Wergedal, J.E., and Baylink, D.J.: Regulation of serum la,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science 190: 578, 1975.

    Article  PubMed  CAS  Google Scholar 

  25. Maenpaa, P.H., Raivio, K.O., and Kekomaki, M.P.: Liver adenine nucleotides: Fructose-induced depletion and its effect on protein synthesis. Science 161: 1253, 1968.

    Article  PubMed  CAS  Google Scholar 

  26. Burch, H.B., Lowry, 0.H., Meinhardt, L., Max, P., and Chyu, K.: Effect of fructose, dihydroxyacetone, glycerol and glucose on metabolites and related compounds in liver and kidney. J. Biol. Chem. 245: 5092, 1970.

    Google Scholar 

  27. Chapman, A.G., and Atkinson, D.E.: Stabilization of adenylate energy charge by the adenylate deaminase reaction. J. Biol. Chem. 248: 8309, 1973.

    PubMed  CAS  Google Scholar 

  28. Woods, H.F., Eggleston, L.V., and Krebs, H.A.: The cause of hepatic accumulation of fructose-l-phosphate on fructose loading. Biochem. J. 119: 501, 1970.

    PubMed  CAS  Google Scholar 

  29. Froesch, E.R.: Essential fructosuria and hereditary fructose intolerance. In, Stanbury, J.B., Syngaarden, J.B. and Fredrickson, D.S. (eds.), The Metabolic Basis of Inherited Disease, p. 131, McGraw-Hill, 1972.

    Google Scholar 

  30. Ross, I.A.: The state of magnesium in cells as estimated from the adenylate kinase equilibrium. Proc. Natl. Acad. Sci. U.S.A. 61: 1079, 1968.

    Article  Google Scholar 

  31. Blair, J.M. Metal ions and enzyme equilibria. A mathematical treatment. FEES Letters 1: 100, 1968.

    Article  CAS  Google Scholar 

  32. Kreusser, W.J., Kurokawa, K., Aznar, E., Sachtjen, E., and Massry, S.G Effect of phosphate depletion on magnesium homeostasis. J. Clin. Invest. 61: (ín press), 1978.

    Google Scholar 

  33. Dominguez, J.H., Gray, R.W., and Lemann, J.J.: Dietary phosphate deprivation in women and men: Effects on mineral and acid balances, parathyroid hormone, and the metabolism of 25-OH-vitamin D. J. Clin. Endocrinol. Metab. 43: 1056, 1976.

    Article  PubMed  CAS  Google Scholar 

  34. Kreusser, W.J., Kurokawa, K., and Massry, S.G.: Unpublished observation.

    Google Scholar 

  35. Thiers, R.E., and Vallee, B.L.: Distribution of metals in sub-cellular fractions of rat liver. J. Biol. Chem. 226: 911, 1957.

    PubMed  CAS  Google Scholar 

  36. Oscai, L.B., and Holloszy, J.O.: Biochemical adaption in muscle. II. Response of mitochondrial adenosine triphosphatase, creatine phosphokinase, and adenylate kinase activities in skeletal muscle to exercise. J. Biol. Chem. 246: 6968, 1971.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Plenum Press, New York

About this chapter

Cite this chapter

Kurokawa, K., Kreusser, W.J., Massry, S.G. (1978). Phosphate Depletion and Adenine Nucleotide Metabolism in Kidney and Liver. In: Massry, S.G., Ritz, E., Rapado, A. (eds) Homeostasis of Phosphate and Other Minerals. Advances in Experimental Medicine and Biology, vol 103. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7758-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7758-0_34

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7760-3

  • Online ISBN: 978-1-4684-7758-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics