Chemical Pathology of Krabbe Disease: The Occurrence of Psychosine and Other Neutral Sphingoglycolipids

  • Marie-Thérèse Vanier
  • Lars Svennerholm
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 68)


In 1916, the Danish neurologist, Knud Krabbe (9), delineated a new type of infantile familial diffuse brain sclerosis and gave the first description of the characteristic giant cells, which are the histological hallmark of the disease. During the 60s, cumulative analytical and experimental findings resulted in the concept of Krabbe disease as galactosylceramidosis, a concept corroborated by the demonstration of a generalized deficiency of galactosylceramide β-galactosidase (21). But further investigations disclosed also additional enzymic deficiencies, involving the degradation of galactosylsphingosine (13), monogalactosyl diglyceride (37) and lactosylceramide (38), all substrates with a terminal β-galactosidic linkage. Though this does not imply the assumption of a multiple enzyme deficiency, since a single enzyme seems to catalyze the hydrolysis of galactosylceramide and of the three other substrates (12, 14, 32, 37), it does open up new approaches in our search for a better comprehension of the pathophysiology of Krabbe disease. The impaired degradation of galactosylceramide appears to be directly involved in the formation of the globoid cells (1, 15, 20), but it cannot by itself explain other characteristics of the disease, such as the lack of demonstrable accumulation of galactosylceramide in extra-neural organs or in brain outside the globoid cells.


Gauche Disease Cerebral White Matter Total Lipid Extract Silicic Acid Column Oligodendroglial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AUSTIN, J.H. & LEHFELDT, D.— Studies in globoid (Krabbe) leukodystrophy. III. Significance of experimentally produced globoidlike elements in rat white matter and spleen. J.Neuropath.Exp.Neurol., 24: 265 (1965).PubMedCrossRefGoogle Scholar
  2. 2.
    BERRA, B. & ZAMBOTTI, V.— Patterns of brain ganglioside fatty acids in sphingolipidoses. Adv.Exp.Med.Biol., 25: 311 (1972)CrossRefGoogle Scholar
  3. 3.
    BRANTE, G.— Studies on lipids in the nervous system with special reference to quantitative chemical determination and topical distribution. Acta Physiol.Scand., 18: Suppl. 63, 1–189 (1949).Google Scholar
  4. 4.
    CLELAND, W.W. & KENNEDY, E.P.— The enzymatic synthesis of psychosine. J.Biol.Chem., 235: 45 (1960).PubMedGoogle Scholar
  5. 5.
    COSTANTINO-CECCARINI, E. & MORELL, P.— Biosynthesis of brain sphingolipids and myelin accumulation in the mouse. Lipids, 7: 656 (1972).PubMedCrossRefGoogle Scholar
  6. 6.
    ETO, Y. & SUZUKI, K.— Brain sphingoglycolipids in Krabbe’s globoid cell leukodystrophy. J.Neurochem., 18: 503 (1971).PubMedCrossRefGoogle Scholar
  7. 7.
    EVANS, J.E. & McCLUER, R.H.— The structure of brain dihexosylceramide in globoid cell leukodystrophy. J.Neurochem., 16: 1393, (1969).PubMedCrossRefGoogle Scholar
  8. 8.
    HILDEBRAND, J., STOFFYN, P. & HAUSER, G.— Biosynthesis of lactosylceramide by rat brain preparations and comparison with the formation of ganglioside GM1 and psychosine during developmant. J.Neurochem., 17: 403 (1970).PubMedCrossRefGoogle Scholar
  9. 9.
    KRABBE, K.— A new familial, infantile form of diffuse brainsclerosis. Brain, 39: 74 (1916).CrossRefGoogle Scholar
  10. 10.
    LIN, Y.N. & RADIN, N.S.— Alternate pathways of cerebroside catabolism. Lipids, 8: 732 (1973).PubMedCrossRefGoogle Scholar
  11. 11.
    MENKES, J.H., DUNCAN, C. & MOOSY, J.— Molecular composition of the major glycolipids in globoid cell leukodystrophy. Neurology, 16: 581 (1966).PubMedCrossRefGoogle Scholar
  12. 12.
    MIYATAKE, T. & SUZUKI, K.— Galactosylsphingosine galactosyl hydrolase. J.Biol.Chem., 247: 5398 (1972).PubMedGoogle Scholar
  13. 13.
    MIYATAKE, T. & SUZUKI, K.— Globoid cell leukodystrophy: additional deficiency of psychosine galactosidase. Biochem.Biophys. Res.Commun., 48: 538 (1972).CrossRefGoogle Scholar
  14. 14.
    MIYATAKE, T. & SUZUKI, K.— Galactosylsphingosine galactosyl hydrolase in rat brain: probable identity with galactosylceramide galactosyl hydrolase. J.Neurochem., 22: 231 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    OLSSON, Y., SOURANDER, P. & SVENNERHOLM, L.— Experimental studies on the pathogenesis of leukodystrophies. I. the effect of intracerebrally injected sphingolipids in the rat’s brain. Acta Neuropath., 6: 153 (1966).PubMedCrossRefGoogle Scholar
  16. 16.
    PHILIPPART, M.— Glycolipid, mucopolysaccharide and carbohydrate distribution in tissues, plasma and urine from glycolipidoses and other disorders. Adv.Exp.Med.Biol., 25: 231 (1972).CrossRefGoogle Scholar
  17. 17.
    RAGHAVAN, S.S., MUMFORD, R.A. & KANFER, J.N.— Deficiency of glucosylsphingosine β-glucosidase in Gaucher disease. Biochem. Biophys.Res.Commun., 54: 256 (1973).PubMedCrossRefGoogle Scholar
  18. 18.
    RAGHAVAN, S.S., MUMFORD, R.A. & KANFER, J.N.— Isolation and characterization of glucosylsphingosine from Gaucher’s spleen. J.Lipid Res., 15: 484 (1974).PubMedGoogle Scholar
  19. 19.
    SAWARDEKER, J.S., SLONEKER, J.K. & JEANES, A.— Quantitative determination of monosaccharides as their alditol acetates by gas-liquid chromatography. Anal.Chem., 37: 1602 (1965).CrossRefGoogle Scholar
  20. 20.
    SOURANDER, P., HANSSON, H.A., OLSSON, Y. & SVENNERHOLM, L.— Experimental studies on the pathogenesis of leukodystrophies. II. The effect of sphingolipids on various cell types in culture from the nervous system. Acta Neuropath., 9: 231 (1966).CrossRefGoogle Scholar
  21. 21.
    SUZUKI, K. & SUZUKI, Y.— Globoid cell leukodystrophy (Krabbe’s disease). Deficiency of galactocerebroside β-galactosidase. Proc. Nat. Acad. Sci. USA, 66: 302 (1970).PubMedCrossRefGoogle Scholar
  22. 22.
    SUZUKI, K. & SUZUKI, Y.— Galactosylceramide lipidosis: globoid cell leukodystrophy (Krabbe’s disease). In The Metabolic Basis of Inherited Disease, J.B. Stanbury, J.B. Wyngaarden & D.S. Fredrickson (eds.), New York, Mc Graw Hill Inc., 1972, pp. 760–782.Google Scholar
  23. 23.
    SVENNERHOLM, E. & SVENNERHOLM, L.— The separation of neutral blood-serum glycolipids by thin-layer chromatography. Biochim. Biophys.Acta, 70: 432 (1963).PubMedCrossRefGoogle Scholar
  24. 24.
    SVENNERHOLM, L.— The quantitative estimation of cerebrosides in nervous tissue. J.Neurochem., 1: 42 (1956).PubMedCrossRefGoogle Scholar
  25. 25.
    SVENNERHOLM, L.— The distribution of lipids in the human nervous system. I. Analytical procedure. Lipids of foetal and newborn brain. J.Neurochem., 11: 839 (1964).PubMedCrossRefGoogle Scholar
  26. 26.
    SVENNERHOLM, L.— The metabolism of gangliosides in cerebral lipidoses. In Inborn Disorders of Sphingolipid Metabolism, S. Aronson & B.W. Volk (eds.), Oxford, Pergamon Press, 1967, pp. 169–186.Google Scholar
  27. 27.
    SVENNERHOLM, L. & STÄLLBERG-STENHAGEN, S.— Changes in the fatty acid composition of cerebrosides of human nervous tissue with age. J.Lipid Res., 9: 215 (1968).PubMedGoogle Scholar
  28. 28.
    SVENNERHOLM, L. & THORIN, H.— Quantitative isolation of brain sulfatides. J.Lipid Res., 3: 483 (1962).Google Scholar
  29. 29.
    SVENNERHOLM, L. & VANIER, M.T.— Brain gangliosides in Krabbe disease. Adv.Exp.Med.Biol., 19: 499 (1972).Google Scholar
  30. 30.
    TAKETOMI, T. & NISHIMURA, H.— Physiological activity of psychosine. Jap.J.Exp.Med., 34: 255 (1964).PubMedGoogle Scholar
  31. 31.
    TAKETOMI, T. & YAMAKAWA, T.— Immunochemical studies of lipids. I. Preparation and immunological proporties of synthetic psychosineprotein antigens. J.Bioohem. (Tokyo), 54 444 (1963).Google Scholar
  32. 32.
    TANAKA, H. & SUZUKI, K.— Lactosylceramide β-galactosidase in human sphingolipidoses. Evidence for two genetically distinct enzymes. J.Biol.Chem., 250: 2324 (1975).PubMedGoogle Scholar
  33. 33.
    VANIER, M.T., HOLM, M., MÅNSSON, J.E. & SVENNERHOLM, L.— The distribution of lipids in the human nervous system. V. Gangliosides and allied neutral glycolipids of infant brain. J.Neurochem., 21: 1375 (1973).PubMedCrossRefGoogle Scholar
  34. 34.
    VANIER, M.T. & SVENNERHOLM, L.— Chemical pathology of Krabbe’s disease. I. Lipid composition and fatty acid patterns of phosphoglycerides in brain. Acta Paediatr.Scand., 63: 494 (1974).PubMedCrossRefGoogle Scholar
  35. 35.
    VANIER, M.T. & SVENNERHOLM, L.— Chemical pathology of Krabbe’s disease. III. Ceramide hexosides and gangliosides of brain. Acta Paediatr.Scand., 64: 641 (1975).PubMedCrossRefGoogle Scholar
  36. 36.
    WELLS, M.A. & DITTMER, J.C.— The use of Sephadex for the removal of nonlipid contaminants from lipid extracts. Biochemistry, 2: 1259 (1963).PubMedCrossRefGoogle Scholar
  37. 37.
    WENGER, D.A., SATTLER, M. & MARKEY, S.P.— Deficiency of monogalactosyl diglyceride β-galactosidase activity in Krabbe’s disease. Biochem.Biophys.Res.Commun., 53: 680 (1973).PubMedCrossRefGoogle Scholar
  38. 38.
    WENGER, D.A., SATTLER, M. & HIATT, W.— Globoid cell leukodystrophy: deficiency of lactosylceramide β-galactosidase. Proc.Nat. Acad.Sci.USA, 71 854 (1974).PubMedCrossRefGoogle Scholar
  39. 39.
    YOUNG, O.M. & KANFER, J.N.— An improved separation of sphingolipids by thin-layer chromatography. J.Chromatog., 19: 611 (1965).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1976

Authors and Affiliations

  • Marie-Thérèse Vanier
    • 1
  • Lars Svennerholm
    • 1
  1. 1.Department of Neurochemistry, Psychiatric Research CentreUniversity of GöteborgGöteborgSweden

Personalised recommendations