Skip to main content

The Microbial Logic and Environmental Significance of Reductive Dehalogenation

  • Chapter
Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 14))

Abstract

In the last 25 years, Western society has decisively changed its attitude toward halogenated compounds. Until the end of the 1960s, “chemicals” were applied indiscriminately in a wide variety of agricultural and industrial processes. Many of these chemicals were chlorinated compounds. They were used because they had many useful characteristics. One of these characteristics was that they were very stable and rather resistant to chemical and biological degradation. With hindsight it is thus not surprising that these halogenated compounds proved to be quite persistent in the environment. Many of these generally hydrophobic compounds have the tendency to accumulate in biota to such levels that they caused considerable damage or even death. The eloquent outcry of Rachel Carson (1962) and others in the 1960s resulted in a drastic reappraisal of the wisdom of using halogenated organic compounds indiscriminately.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrahamsson, K., and Klick, S., 1991, Degradation of halogenated phenols in anoxic natural marine sediments, Mar. Pollut. Bull. 22:227–233.

    Article  CAS  Google Scholar 

  • Abrahamsson, K., Ekdahl, A., Collen, J., Fahlström, E., and Pedersen, M., 1995, The natural formation of trichloroethylene and perchloroethylene in seawater, in: Naturally-Produced Organohalogens (A. Grimvall and E. W. B. de Leer, eds.), Kluwer Academic Publishers, Netherlands, pp. 327–331.

    Chapter  Google Scholar 

  • Abramowicz, D. A., Brennan, M. J., van Dort, H. M., and Gallager, E. L., 1993, Factors influencing the rate of polychlorinated biphenyl dechlorination in Hudson River sediments, Environ. Sci. Technol. 27:1125–1131.

    Article  CAS  Google Scholar 

  • Adrian, N. R., and Suflita, J. M., 1990, Reductive dehalogenation of a nitrogen heterocyclic herbicide in anoxic aquifer slurries, Appl. Environ. Microbiol. 56:292–294.

    PubMed  CAS  Google Scholar 

  • Adrian, N. R., and Suflita, J. M., 1994, Anaerobic biodegradation of halogenated and nonhalogenated N-, S-, and O-heterocyclic compounds in aquifer slurries, Environ. Toxicol. Chem. 13:1551–1557.

    CAS  Google Scholar 

  • Ahring, B. K., Christiansen, N., Mathrani, I., Hendriksen, H. V., Macario, A. J. L., and Conway de Macario, E., 1992, Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei, Appl. Environ. Microbiol. 58: 3677–3682.

    PubMed  CAS  Google Scholar 

  • Alcock, R. E., Johnston, A. E., McGrath, S. P., Berrow, M. L., and Jones, K. C., 1993, Long-term changes in the polychlorinated biphenyl content of United Kingdom soils, Environ. Sci. Technol. 27:1918–1923.

    Article  CAS  Google Scholar 

  • Alder, A. C., Häggblom, M. M., Oppenheimer, S. R., and Young, L. Y., 1993, Reductive dechlorination of polychlorinated biphenyls in anaerobic sediments, Environ. Sci. Technol. 27:530–538.

    Article  CAS  Google Scholar 

  • Allard, A.-S., Hynning, P.-A., Remberger, M., and Neilson, A. H., 1992, Role of sulfate concentration in dechlorination of 3,4,5-trichlorocatechol by stable enrichment cultures grown with coumarin and flavone glycones and aglycones, Appl. Environ. Microbiol. 58:961–968.

    PubMed  CAS  Google Scholar 

  • Allard, A.-S., Hynning, P.-A., Remberger, M., and Neilson, A. H., 1994, Bioavailability of chlorocatechols in naturally contaminated sediment samples and of chloroguaiacols covalently bound to C2-guaiacyl residues, Appl. Environ. Microbiol. 60:777–784.

    PubMed  CAS  Google Scholar 

  • Anid, P. J., Nies, L., and Vogel, T. M., 1991, Sequential anaerobic-aerobic biodegradation of PCBs in the river model, in: Proceedings: On-site Reclamation Processes for Xenobiotic Treatment and Hydrocarbon Treatment (R. E. Honchee and R. F. Olfenbuttel, eds.), Butterworth-Heinemann, Boston, pp. 428–436.

    Google Scholar 

  • Anonymus, 1992, Montreal protocol: Faster cuts agreed in Copenhagen, Chem. Indust. 7 December, p. 887.

    Google Scholar 

  • Anonymus, 1993, Facts and figures for the chemical industry, Chem. Eng. News 40–45.

    Google Scholar 

  • Apajalahti, J. H. A., and Sakinoja-Salonen, M. S., 1987, Complete dechlorination of tetrachlorohydroquinone by cell extracts of pentachlorophenol-induced Rhodococcus chlorophenolicus, J. Bacteriol. 169:5125–5130.

    PubMed  CAS  Google Scholar 

  • Ashworth, R. B., and Cornier, M. J., 1967, Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis, Science 156:158–159.

    Google Scholar 

  • Assaf-Anid, N., Nies, L., and Vogel, T. M., 1992, Reductive dechlorination of a polychlorinated biphenyl congener and hexachlorobenzene by vitamin B12, Appl. Environ. Microbiol. 58:1057–1060.

    PubMed  CAS  Google Scholar 

  • Assaf-Anid, N., Hayes, K. F., and Vogel, T. M., 1994, Reductive dechlorination of carbon tetrachloride by cobalamin(II) in the presence of dithiothreitol: Mechanistic study, effect of redox potential and pH, Environ. Sci. Technol. 28:246–252.

    Article  PubMed  CAS  Google Scholar 

  • Barber, II, L. B., 1988, Dichlorobenzene in ground water: Evidence for long-term persistence, Ground Wat. 26:696–702.

    Article  CAS  Google Scholar 

  • Bedard, D. L., and Van Dort, H. M., 1992, Brominated biphenyls can stimulate reductive dechlorination of endogenous Aroclor 1260 in methanogenic sediment slurries, Abstr. 92nd Gen. Mtg. Amer. Soc. Microbiol., p. 339, Q-26.

    Google Scholar 

  • Benedick, R. E., 1991, Ozone Diplomacy: New Directions in Safeguarding the Planet, Harvard University Press, Cambridge.

    Google Scholar 

  • Berry, M. J., Banu, L., and Larsen, R., 1991, Type I iodothyronine deiodinase is a selenocysteine-containing enzyme, Nature 349:438–440.

    Article  PubMed  CAS  Google Scholar 

  • Beurskens, J. E. M., Dekker, C. G. C., Jonkhoff, J., and Pompstra, L., 1993a, Microbial dechlorination of hexachlorobenzene in a sedimentation area of the Rhine River, Biochemistry 19: 61–81.

    Google Scholar 

  • Beurskens, J. E. M., Mol, G. A. J., Barreveld, H. L., van Munster, B., and Winkels, H. J., 1993b, Geochronology of priority pollutants in a sedimentation area of the Rhine River, Environ. Toxicol. Chem. 12:1549–1566.

    Article  CAS  Google Scholar 

  • Beurskens, J. E. M., Dekker, C. G. C., van den Heuvel, H., Swart, M., De Wolf, J., and Dolfing, J., 1994a, Dechlorination of chlorinated benzenes by an anaerobic microbial consortium that selectively mediates the thermodynamic most favorable reactions, Environ. Sci. Technol. 28: 701–706.

    Article  PubMed  CAS  Google Scholar 

  • Beurskens, J. E. M., Winkels, H. J., de Wolf, J., and Dekker, C. G. C., 1994b, Trends of priority pollutants in the Rhine during the last 50 years, Wat. Sci. Technol. 29:77–85.

    CAS  Google Scholar 

  • Beurskens, J. E. M., Toussaint, M., de Wolf, J., van der Steen, J., Slot, P., Commandeur, L. C. M., and Parsons, J. R., 1995a, Dehalogenation of chlorinated dioxins by an anaerobic microbial consortium from sediment, Environ. Toxicol. Chem. 14: 939–943.

    Article  CAS  Google Scholar 

  • Beurskens, J. E. M., de Wolf, J., and Dolfing, J., 1995b, Enrichment of a hexachlorobenzene dechlorinating consortium from marine sediment, submitted.

    Google Scholar 

  • Beurskens, J. E. M., de Wolf, J., and van den Heuvel, H., 1995c, Reductive dechlorination of some polychlorinated biphenyls by an enrichment culture from a sedimentation area of the Rhine River, submitted.

    Google Scholar 

  • Blasland and Bouck Engineers, 1992, Sheboygan River and harbor biodegradation pilot study work plan, internal report.

    Google Scholar 

  • Bopp, R. F., Simpson, H. J., Olsen, C. R., and Kostyk, N., 1981, Polychlorinated biphenyls in sediments of the tidal Hudson River, New York, Environ. Sci. Technol. 15:210–216.

    Article  PubMed  CAS  Google Scholar 

  • Bosma, T. N. P., 1994, Simulation of Subsurface Biotransformation, Agricultural University, Wageningen, The Netherlands, Ph.D. thesis.

    Google Scholar 

  • Bosma, T. N. P., van der Meer, J. R., Schraa, G., Tros, M. E., and Zehnder, A. J. B., 1988, Reductive dechlorination of all trichloro-and dichlorobenzene isomers, FEMS Microbiol. Ecol. 53:223–229.

    Article  CAS  Google Scholar 

  • Boyd, S. A., and Shelton, D. R., 1984, Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge, Appl. Environ. Microbiol. 47:272–277.

    PubMed  CAS  Google Scholar 

  • Boyd, S. A., Shelton, D. R., Berry, D., and Tiedje, J. M., 1983, Anaerobic biodegradation of phenolic compounds in digested sludge, Appl. Environ. Microbiol. 46:50–54.

    PubMed  CAS  Google Scholar 

  • Braus-Stromeyer, S. A., Cook, A. M., and Leisinger, T., 1993a, Biotransformation of chloromethane to methanethiol, Environ. Sci. Technol. 27:1577–1579.

    Article  CAS  Google Scholar 

  • Braus-Stromeyer, S. A., Hermann, R., Cook, A. M., and Leisinger, T., 1993b, Dichlormethane as the sole carbon source for an acetogenic mixed culture and isolation of a fermentative, dichloromethane-degrading bacterium, Appl. Environ. Microbiol. 59:3790–3797.

    PubMed  CAS  Google Scholar 

  • Brown, J. F., and Wagner, R. E., 1990, PCB movement, dechlorination, and detoxification in the Acushnet Estuary, Environ. Toxicol. Chem. 9:1215–1233.

    Article  CAS  Google Scholar 

  • Brown, J. F., Jr., Bedard, D. L., Brennan, M. J., Carnahan, J. C., Feng, H., and Wagner, R. E., 1987a, Polychlorinated biphenyl dechlorination in aquatic sediments, Science 236:709–712.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. F., Jr., Wagner, R. E., Feng, H., Bedard, D. L., Brennan, M. J., Carnahan, J. C., and May, R. J., 1987b, Environmental dechlorination of PCBs, Environ. Toxicol. Chem. 6:579–593.

    Article  CAS  Google Scholar 

  • Carson, R., 1962, Silent Spring, Fawcett Crest, New York.

    Google Scholar 

  • Carter, S. R., and Jewell, W. J., 1993, Biotransformation of tetrachloroethylene by anaerobic attached-films at low temperatures, Water Res. 27:607–615.

    Article  CAS  Google Scholar 

  • Chu, K. H., and Jewell, W. J., 1994, Treatment of tetrachloroethylene with anaerobic attached film process, J. Environ. Eng. 120:58–71.

    Article  CAS  Google Scholar 

  • Cole, J. R., Cascarelli, A. L., Mohn, W. W., and Tiedje, J. M., 1994, Isolation and characterization of a novel bacterium growing via reductive dehalogenation of 2-chlorophenol, Appl. Environ. Microbiol. 60:3536–3542.

    PubMed  CAS  Google Scholar 

  • Cord-Ruwisch, R. H., Seitz, H.-J., and Conrad, R., 1988, The capacity of hydrogenotrophic anaerobic bacteria to complete for traces of hydrogen depends on the redox potential of the terminal electron acceptor, Arch. Microbiol. 149:350–357.

    Article  CAS  Google Scholar 

  • Cozza, C. L., and Woods, S. L., 1992, Reductive dechlorination pathways for substituted benzenes: A correlation with electronic properties, Biodegradation 2:265–278.

    Article  Google Scholar 

  • Curtis, G. P., 1991, Ph.D. thesis; cited by: Semprini, L., Hopkins, G. D., McCarty, P. L., and Roberts, P. V., 1992, In situ transformation of carbon tetrachloride and other halogenated compounds resulting from biostimulation under anoxic conditions, Environ. Sci. Technol. 26:2454–2461.

    Article  CAS  Google Scholar 

  • Davies-Venn, C., Young, J. C., and Tabak, H. H., 1992, Impact of chlorophenols and chloroanilines on the kinetics of acetoclastic methanogenesis, Environ. Sci. Technol. 26:1627–1635.

    Article  CAS  Google Scholar 

  • Dean, J. A., 1985, Lange’s Handbook of Chemistry, 13th ed., McGraw-Hill, New York.

    Google Scholar 

  • de Bruijn, J., Busser, F., Seinen, W., and Hermens, J., 1989, Determination of octanol/water partition coefficients for hydrophobic organic chemicals with the “slow-stirring” method, Environ. Toxicol. Chem. 8:499–512.

    Article  Google Scholar 

  • de Bruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G., and Zehnder, A. J. B., 1992, Complete reductive transformation of tetrachloroethene to ethane, Appl. Environ. Microbiol. 58: 1996–2000.

    PubMed  Google Scholar 

  • DeFlaun, M. F., Ensley, B. D., and Steffan, R. J., 1992, Biological oxidation of hydrochlorofluorocarbons (HCFCs) by a methanotrophic bacterium, Biol technology 10:1576–1578.

    CAS  Google Scholar 

  • De Jong, E., Field, J. A., Spinnler, H.-E., Wijnberg, J. P. B. A., and de Bont, J. A. M., 1994, Significant biogenesis of chlorinated aromatics by fungi in natural environments, Appl. Environ. Microbiol. 60:264–270.

    PubMed  Google Scholar 

  • de Voogt, P., Wells, D. E., Reutergardh, L., and Brinkman, U. A. T., 1990, Biological activity, determination and occurrence of planar, mono-and di-ortho PCBs, Int. J. Environ. Anal. Chem. 40:1–46.

    Article  Google Scholar 

  • DeWeerd, K. A., and Suflita, J. M., 1990, Anaerobic aryl reductive dehalogenation of halobenzoates by cell extracts of “Desulfomonile Tiedjei,” Appl. Environ. Microbiol. 56:2999–3005.

    PubMed  CAS  Google Scholar 

  • DeWeerd, K. A., Suflita, J. M., Linkfield, T. G., Tiedje, J. M., and Pritchard, P. H., 1986, The relationship between reductive dehalogenation and other aryl substituent removal reactions catalyzed by anaerobes, FEMS Microbiol. Ecol. 38:331–339.

    Article  CAS  Google Scholar 

  • DeWeerd, K. A., Mandelco, L., Tanner, R. S., Woese, C. R., and Suflita, J. M., 1990, Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium, Arch. Microbiol. 154:23–30.

    Article  CAS  Google Scholar 

  • DiStefano, T. D., Gossett, J. M., and Zinder, S. H., 1991, Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis, Appl. Environ. Microbiol. 57:2287–2292.

    PubMed  CAS  Google Scholar 

  • DiStefano, T. D., Gossett, J. M., and Zinder, S. H., 1992, Hydrogen as an electron donor for dechlorination of tetrachloroethene by an anaerobic mixed culture, Appl. Environ. Microbiol. 58:3622–3629.

    PubMed  CAS  Google Scholar 

  • Dolfing, J., 1986, Granulation in UASB reactors, Water Sci. Technol. 18(12):15–25.

    CAS  Google Scholar 

  • Dolfing, J., 1990, Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in an anaerobic bacterium, strain DCB-1, Arch. Microbiol. 153:264–266.

    Article  PubMed  CAS  Google Scholar 

  • Dolfing, J., 1992, The energetic consequences of hydrogen gradients in methanogenic ecosystems, FEMS Microbiol. Ecol. 101:183–187.

    CAS  Google Scholar 

  • Dolfing, J., 1995, Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s [letter to the editor], Appl. Environ. Microbiol. 61: 2450–2451.

    CAS  Google Scholar 

  • Dolfing, J., and Bloemen, W. G. B. M., 1985, Activity measurements as a tool to characterize the microbial composition of methanogenic environments, J. Microbiol. Meth. 4:1–12.

    Article  CAS  Google Scholar 

  • Dolfing, J., and Harrison, B. K., 1992, Gibbs free energy of formation of halogenated aromatic compounds and their potential role as electron acceptors in anaerobic environments, Environ. Sci. Technol. 26:2213–2218.

    Article  CAS  Google Scholar 

  • Dolfing, J., and Harrison, B. K., 1993, Redox and reduction potentials as parameters to predict the degradation pathway of chlorinated benzenes in anaerobic environments, FEMS Microbiol. Ecol. 13:23–30.

    Article  CAS  Google Scholar 

  • Dolfing, J., and Janssen, D. B., 1994, Estimates of Gibbs free energies of formation of chlorinated aliphatic compounds, Biodegradation 5:21–28.

    CAS  Google Scholar 

  • Dolfing, J., and Tiedje, J. M., 1986, Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate, FEMS Microbiol. Ecol. 38:293–298.

    Article  CAS  Google Scholar 

  • Dolfing, J., and Tiedje, J. M., 1991a, Influence of substituents on reductive dehalogenation of 3-chlorobenzoate analogs, Appl. Environ. Microbiol. 57:820–824.

    PubMed  CAS  Google Scholar 

  • Dolfing, J., and Tiedje, J. M., 1991b, Kinetics of two complementary hydrogen sink reactions in a defined 3-chlorobenzoate degrading methanogenic co-culture, FEMS Microbiol. Ecol. 86:25–32.

    Article  CAS  Google Scholar 

  • Dolfing, J., and Tiedje, J. M., 1991c, Acetate as a source of reducing equivalents in the reductive dechlorination of 2,5-dichlorobenzoate, Arch. Microbiol. 156:356–361.

    Article  CAS  Google Scholar 

  • Dolfing, J., van den Wijngaard, A. J., and Janssen, D. B., 1993, Microbiology aspects of the removal of chlorinated hydrocarbons from air, Biodegradation 4:261–282.

    Article  PubMed  CAS  Google Scholar 

  • Drzyzga, O., Jansen, S., and Blotevogel, K.-H., 1994, Mineralization of monofluorobenzoate by a diculture under sulfate-reducing conditions, FEMS Microbiol. Lett. 116:215–220.

    Article  PubMed  CAS  Google Scholar 

  • Eberson, L., 1987, Electron Transfer Reactions in Organic Chemistry, Springer, Berlin.

    Book  Google Scholar 

  • Egli, C., Thüer, D., Cook, A. M., and Leisinger, T., 1989, Monochloro-and dichloroacetic acids as carbon and energy sources for a stable, methanogenic mixed culture, Arch. Microbiol. 152:218–223.

    Article  CAS  Google Scholar 

  • Eitzer, B. D., and Hites, R. A., 1989, Atmospheric transport and deposition of polychlorinated dibenzo-p-dioxins and dibenzofurans, Environ. Sci. Technol. 23:1396–1401.

    Article  CAS  Google Scholar 

  • Farwell, S. O., Beland, F. A., and Geer, R. D., 1975, Reduction pathways of organohalogen compounds part 1. Chlorinated benzenes, J. Electroanal. Chem. 61:303–313.

    Article  CAS  Google Scholar 

  • Fathepure, B. Z., and Vogel, T. M., 1991, Complete degradation of polychlorinated hydrocarbons by a two-stage biofilm reactor, Appl. Environ. Microbiol. 57:3418–3422.

    PubMed  CAS  Google Scholar 

  • Fathepure, B. Z., Tiedje, J. M., and Boyd, S. A., 1987, Anaerobic bacteria that dechlorinate perchloroethylene, Appl. Environ. Microbiol. 53:2671–2674.

    PubMed  CAS  Google Scholar 

  • Fathepure, B. Z., Tiedje, J. M., and Boyd, S. A., 1988, Reductive dechlorination of hexa-chlorobenzene to tri-and dichlorobenzenes in anaerobic sewage sludge, Appl. Environ., Microbiol. 54:327–330.

    CAS  Google Scholar 

  • Fenchel, T., and Blackburn, T. H., 1979, Bacteria and Mineral Cycling, Academic Press, London.

    Google Scholar 

  • Flanagan, W. P., and May, R. J., 1993, Metabolite detection as evidence for naturally occurring aerobic PCB biodegradation in Hudson River sediments, Environ. Sci. Technol. 27:2207–2212.

    Article  CAS  Google Scholar 

  • Fliege, H., Stock, W., Alberti, J., Poppe, A., Juhnke, I., Knie, J., and Schiller, W., 1989, Environmental behaviour of polychlorinated mono-methyl-substituted diphenyl-methanes (Me-PCDMs) in comparison with polychlorinated biphenyls (PCBs). II Environmental residues and aquatic toxicity, Chemosphere 18:1367–1378.

    Article  Google Scholar 

  • Furukawa, K., Tomizuka, N., and Kamibayashi, A., 1983, Metabolic breakdown of Kaneclors (polychlorobiphenyls) and their products by Acinetobacter sp., Appl. Environ. Microbiol. 46:140–145.

    PubMed  CAS  Google Scholar 

  • Gantzer, C. J., and Wackett, L. P., 1991, Reductive dechlorination catalyzed by bacterial transitionmetal coenzymes, Environ. Sci. Technol. 25:715–722.

    Article  CAS  Google Scholar 

  • Genthner, S. B. R., Price, W. A., and Pritchard, P. H., 1989, Characterization of anaerobic dechlorinating consortia derived from aquatic sediments, Appl. Environ. Microbiol. 55:1466–1471.

    PubMed  CAS  Google Scholar 

  • Gillham, R. W., and O’Hannesin, S. F., 1994, Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Wat. 32:958–967.

    Article  CAS  Google Scholar 

  • Gillham, R. W., O’Hannesin, S. F., and Orth, W. S., 1993, Metal enhanced abiotic degradation of halogenated aliphatics: Laboratory tests and field trials, paper presented at the 1993 HazMat Central Conference, Chicago, Illinois, March 9–11.

    Google Scholar 

  • Goodwin, S., Conrad, R., and Zeikus, J. G., 1988, Influence of pH on microbial hydrogen metabolism in diverse sedimentary ecosystems, Appl. Environ. Microbiol. 54:590–593.

    PubMed  CAS  Google Scholar 

  • Goodwin, S., Giralo-Gomez, E., Mobarry, B., and Switzenbaum, M. S., 1991, Comparison of diffusion and reaction rates in anaerobic microbial aggregates, Microb. Ecol. 22:161–174.

    Article  Google Scholar 

  • Gossett, J. M., 1987, Measurement of Henry’s law constants for C1 and C2 chlorinated hydrocarbons, Environ. Sci. Technol. 21:202–208.

    Article  CAS  Google Scholar 

  • Götz, R., Schumacher, E., Roch, K., Specht, W., and Weeren, R. D., 1990, Chlorierte kohlenwasserstoffe (CKWs) in Hamburger hafensedimenten, Vom Wasser 75:393–415.

    Google Scholar 

  • Götz, R., Friesel, P., Roch, K., Papke, O., Ball, M., and Lis, A., 1993, Polychlorinated-p-dibenzodioxins (PCDDs), dibenzofurans (PCDFs), and other chlorinated compounds in the river Elbe: Results on bottom sediments and fresh sediments collected in sedimentation chambers, Chemosphere 27:105–111.

    Article  Google Scholar 

  • Grimvall, A., and de Leer, E. W. B., 1995, Naturally-Produced Organohalogens, Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Book  Google Scholar 

  • Groenewegen, P. E. J., Driessen, A. J. M., Konings, W. N., and de Bont, J. A. M., 1990, Energy-dependent uptake of 4-chlorobenzoate in the coryneform bacterium NTB-1, J. Bacteriol. 172:419–423.

    PubMed  CAS  Google Scholar 

  • Groenewegen, P. E. J., van den Tweel, W. J. J., and de Bont, J. A. M., 1992, Anaerobic bioformation of 4-hydroxybenzoate from 4-chlorobenzoate by the coryneform bacterium NTB-1, Appl. Microbiol. Biotechnol. 36:541–547.

    Article  CAS  Google Scholar 

  • Häggblom, M. M., 1992, Microbial breakdown of halogenated aromatic pesticides and related compounds, FEMS Microbiol. Rev. 103:29–72.

    Article  Google Scholar 

  • Häggblom, M. M., and Young, L. Y., 1990, Chlorophenol degradation coupled to sulfate reduction, Appl. Environ. Microbiol. 56:3255–3260.

    PubMed  Google Scholar 

  • Häggblom, M. M., Rivera, M. D., and Young, L. Y., 1993, Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids, Appl. Environ. Microbiol. 59:1162–1167.

    PubMed  Google Scholar 

  • Hale, D. D., Rogers, J. E., and Wiegel, J., 1991, Environmental factors correlated to dichlorophenol dechlorination in anoxic freshwater sediments, Environ. Toxicol. Chem. 10:1255–1265.

    Article  CAS  Google Scholar 

  • Harkness, M. R., McDermott, J. B., Abramowicz, D. A., Salvo, J. J., Flanagan, W. P., Stephens, M. L., Mondello, F. J., May, R. J., Lobos, J. H., Carroll, K. M., Brennan, M. J., Bracco, A. A., Fish, K. M., Warner, G. L., Wilson, P. R., Dietrich, D. K., Lin, D. T., Morgan, C. B., and Gately, W. L., 1993, In situ stimulation of aerobic PCB biodegradation in Hudson River sediments, Science 259:503–507.

    Article  PubMed  CAS  Google Scholar 

  • Harper, D. B., 1993, Biogenesis and metabolic role of halomethanes in fungi and plants, in: Metal Ions in Biological Systems, Vol. 29 (H. Sigel and A. Sigel, eds.), Marcel Dekker, New York, pp. 346–388.

    Google Scholar 

  • Hendriksen, H. V., and Ahring, B. K., 1992, Metabolism and kinetics of pentachlorophenol transformation in anaerobic granular sludge, Appl. Microbiol. Biotechnol. 37:662–666.

    Article  CAS  Google Scholar 

  • Hendriksen, H. V., and Ahring, B. K., 1993, Anaerobic dechlorination of pentachlorophenol in fixed-film and upflow anaerobic sludge blanket reactors using different inocula, Biodegradation 3:399–408.

    Article  CAS  Google Scholar 

  • Hendriksen, H. V., Larsen, S., and Ahring, B. K., 1992, Influence of a supplemental carbon source on anaerobic dechlorination of pentachlorophenol in granular sludge, Appl. Environ. Microbiol. 58:365–370.

    PubMed  CAS  Google Scholar 

  • Hoekstra, E. J., and de Leer, E. W. B., 1993, Natural production of chlorinated aromatic compounds in soil, in: Contaminated Soil 93 (F. Arendt, G. J. Annokkee, R. Bosman, and W. J. van den Brink, eds.), Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 215–224.

    Chapter  Google Scholar 

  • Holliger, H. C., 1992, Reductive Dehalogenation by Anaerobic Bacteria, Agricultural University, Wageningen, The Netherlands, Ph.D. thesis.

    Google Scholar 

  • Holliger, C., Schraa, G., Stams, A. J. M., and Zehnder, A. J. B., 1992, Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene, Appl. Environ. Microbiol. 58:1636–1644.

    PubMed  CAS  Google Scholar 

  • Holliger, C., Schraa, G., Stams, A. J. M., and Zehnder, A. J. B., 1993, A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth, Appl. Environ. Microbiol. 59:2991–2997.

    PubMed  CAS  Google Scholar 

  • Holmes, D. A., Harrison, B. K., and Dolfing, J., 1993, Estimation of Gibbs free energies of formation for polychlorinated biphenyls, Environ. Sci. Technol. 27:725–731.

    Article  CAS  Google Scholar 

  • Hong, C.-S., Bush, B., Xiao, J., and Qiao, H., 1993, Toxic potential of non-ortho and mono-ortho coplanar polychlorinated biphenyls in Aroclors, seals, and humans, Arch. Environ. Contam. Toxicol. 25:118–123.

    Article  PubMed  CAS  Google Scholar 

  • Horowitz, A., Suflita, J. M., and Tiedje, J. M., 1983, Reductive dehalogenations of halobenzoates by anaerobic lake sediment microorganisms, Appl. Environ. Microbiol. 45:1459–1465.

    PubMed  CAS  Google Scholar 

  • Howard, P. H., 1989, Fate and Exposure Data for Organic Chemicals, Lewis Publishers, Chelsea, England.

    Google Scholar 

  • Jones, K. C., Sanders, G., Wild, S. R., Burnett, V., and Johnston, A. E., 1992, Evidence for a decline of PCBs and PAHs in rural vegetation and air in the United Kingdom, Nature 356:137–140.

    Article  CAS  Google Scholar 

  • King, G. M., 1986, Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate, Nature 323:257–259.

    Article  CAS  Google Scholar 

  • King, G. M., 1988, Dehalogenation in marine sediments containing natural sources of halophenols, Appl. Environ. Microbiol. 54:3079–3085.

    PubMed  CAS  Google Scholar 

  • Kohring, G.-W., Zhang, X., and Wiegel, J., 1989, Anaerobic dechlorination of 2,4-dichlorophenol in freshwater sediments in the presence of sulfate, Appl. Environ. Microbiol. 55:2735–2737.

    PubMed  CAS  Google Scholar 

  • Kriegman-King, M. R., and Reinhard, M., 1992, Transformation of carbon tetrachloride in the presence of sulfide, biotite, and vermiculite, Environ. Sci. Technol. 26:2198–2208.

    Article  CAS  Google Scholar 

  • Kriegman-King, M. R., and Reinhard, M., 1994, Transformation of carbon tetrachloride by pyrite in aqueous solution, Environ. Sci. Technol. 28:692–700.

    Article  PubMed  CAS  Google Scholar 

  • Krone, U. E., Thauer, R. K., and Hogenkamp, H. P. C., 1989a, Reductive dehalogenation of chlorinated C1-hydrocarbons mediated by corrinoids, Biochemistry 28:4908–4914.

    Article  CAS  Google Scholar 

  • Krone, U. E., Laufer, K., Thauer, R. K., and Hogenkamp, H. P. C., 1989b, Coenzyme F430 as a possible catalyst for the reductive dehalogenation of chlorinated C 1 hydrocarbons in methanogenic bacteria, Biochemistry 28:10061–10065.

    Article  PubMed  CAS  Google Scholar 

  • Krone, U. E., Thauer, R. K., Hogenkamp, H. P. C., and Steinbach, K., 1991, Reductive formation of carbon monoxide from CC14 and FREONs 11, 12, and 13 catalyzed by corrinoids, Biochemistry 30:2713–2719.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn, E. P., and Suflita, J. M., 1989, Dehalogenation of pesticides by anaerobic microorganisms in soils and groundwater—a review, in: Reactions and Movements of Organic Chemicals in Soils (B. L. Sawhney and K. Brown, eds.), Special Publication 22, Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin, pp. 111–180.

    Google Scholar 

  • Kuhn, E. P., Townsend, G. T., and Suflita, J. M., 1990, Effect of sulfate and organic carbon supplements on reductive dehalogenation of chloroanilines in anaerobic aquifer slurries, Appl. Environ. Microbiol. 56:2630–2637.

    PubMed  CAS  Google Scholar 

  • Lake, J. L., Pruell, R. J., and Osterman, F. A., 1992, An examination of dechlorination processes and pathways in New Bedford Harbor sediments, Marine Environ. Res. 33:31–47.

    Article  CAS  Google Scholar 

  • Larsen, S., Hendriksen, H. V., and Ahring, B. K., 1991, Potential for thermophilic (50°C) anaerobic dechlorination of pentachlorophenol in different ecosystems, Appl. Environ. Microbiol. 57:2085–2090.

    PubMed  CAS  Google Scholar 

  • Leisinger, T., 1983, Microorganisms and xenobiotic compounds, Experientia 39:1183–1191.

    Article  PubMed  CAS  Google Scholar 

  • Liu, S. M., 1995, Anaerobic dechlorination of chlorinated pyridines in anoxic freshwater sediment slurries, J. Environ. Sci. Health Part A-Environ. Sci. Eng. 30:485–503.

    Google Scholar 

  • Lovelock, J. E., 1975, Natural halocarbons in the air and in the sea, Nature 256:193–194.

    Article  PubMed  CAS  Google Scholar 

  • Lovley, D. R., and Woodward, J. C., 1992, Consumption of freons CFC-11 and CFC-12 by anaerobic sediments and soils, Environ. Sci. Technol. 26:925–929.

    Article  CAS  Google Scholar 

  • Mackay, D., and Shiu, W. Y., 1981, A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data 10:1175–1199.

    Article  CAS  Google Scholar 

  • Madsen, E. L., 1991, Determining in situ biodegradation, Environ. Sci. Technol. 25:1663–1673.

    Article  Google Scholar 

  • Madsen, T., and Aamand, J., 1991, Effects of sulfuroxy anions on degradation of pentachlorophenol by a methanogenic enrichment culture, Appl. Environ. Microbiol. 57:2453–2458.

    PubMed  CAS  Google Scholar 

  • Madsen, T., and Aamand, J., 1992, Anaerobic transformation and toxicity of trichlorophenols in a stable enrichment culture, Appl. Environ. Microbiol. 58:557–561.

    PubMed  CAS  Google Scholar 

  • Madsen, T., and Licht, D., 1992, Isolation and characterization of an anaerobic chlorophenol-transforming bacterium, Appl. Environ. Microbiol. 58:2874–2878.

    PubMed  CAS  Google Scholar 

  • Matheson, L. J., and Tratnyek, P. G., 1994, Reductive dehalogenation of chlorinated methanes by iron metal, Environ. Sci. Technol. 28:2045–2053.

    Article  PubMed  CAS  Google Scholar 

  • McCarty, P. L., Reinhard, M., and Rittmann, B. E., 1981, Trace organics in groundwater, Environ. Sci. Technol. 15:40–51.

    Article  CAS  Google Scholar 

  • Messmer, M., Wohlfarth, G., and Diekert, G., 1993, Methyl chloride metabolism of the strictly anaerobic, methyl chloride-utilizing homoacetogen strain MC, Arch. Microbiol. 160:383–387.

    Article  CAS  Google Scholar 

  • Mikeseil, M. D., and Boyd, S. A., 1986, Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms, Appl. Environ. Microbiol. 52:861–865.

    Google Scholar 

  • Mohn, W. W., and Kennedy, K. J., 1992, Reductive dehalogenation of chlorophenols by Desulfomonile tiedjei DCB-1, Appl. Environ. Microbiol. 58:1367–1370.

    PubMed  CAS  Google Scholar 

  • Mohn, W. W., and Tiedje, J. M., 1990, Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation, Arch. Microbiol. 153:267–271.

    Article  PubMed  CAS  Google Scholar 

  • Mohn, W. W., and Tiedje, J. M., 1991, Evidence for chemiosmotic coupling of reductive dechlorination and ATP synthesis in Desulfomonile tiedjei, Arch. Microbiol. 157:1–6.

    Article  CAS  Google Scholar 

  • Mohn, W. W., and Tiedje, J. M., 1992, Microbial reductive dechlorination, Microbiol. Rev. 56:482–507.

    PubMed  CAS  Google Scholar 

  • Molina, M. J., and Rowland, F. S., 1974, Stratospheric sink for chlorofluoromethanes: Chlorine atom-catalysed destruction of ozone, Nature 249:810–812.

    Article  CAS  Google Scholar 

  • Morris, P. J., Quensen, J. F., Tiedje, J. M., and Boyd, S.A., 1992, Reductive debromination of the commercial polybrominated biphenyl mixture firemaster BP6 by anaerobic microorganisms from sediments, Appl. Environ. Microbiol. 58:3249–3256.

    PubMed  CAS  Google Scholar 

  • Morris, P. J., Quensen, III, J. F., Tiedje, J. M., and Boyd, S. A., 1993, An assessment of the reductive debromination of polybrominated biphenyls in the Pine River Reservoir, Environ. Sci. Technol. 27:1580–1586.

    Article  CAS  Google Scholar 

  • Nayler, O., Insali, R., and Kay, R. R., 1992, Differentiation-inducing-factor dechlorinase, a novel cytosolic dechlorinating enzyme from Dictyostelium discoideum, Eur. J. Biochem. 208:531–536.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, D. K., Woods, S. L., Istok, J. D., and Peek, D. C., 1992, Reductive dechlorination of chlorophenols by a pentachlorophenol-acclimated methanogenic consortium, Appl. Environ. Microbiol. 58:2280–2286.

    PubMed  CAS  Google Scholar 

  • Neidelman, S. L., and Geigert, J., 1986, Biohalogenation: Principles, Basic Roles and Applications, Ellis Horwood, Chichester, England.

    Google Scholar 

  • Nies, L. F., 1993, Microbial and Chemical Reductive Dechlorination of Polychlorinated Biphenyls and Chlorinated Benzenes, The University of Michigan, Ann Arbor, Ph.D. thesis.

    Google Scholar 

  • Nies, L. F., and Vogel, T. M., 1991, Identification of the proton source for the microbial reductive dechlorination of 2,3,4,5,6-pentachlorobiphenyl, Appl. Environ. Microbiol. 57:2771–2774.

    PubMed  CAS  Google Scholar 

  • Nishino, S. F., and Spain, J. C., 1993, Cell-density dependent adaptation of Pseudomonas putida to biodegradation of p-nitrophenol, Environ. Sci. Technol. 27:489–494.

    Article  CAS  Google Scholar 

  • Öberg, L. G., Andersson, R., Wågman, N., and Rappe, C., 1993, Formation of polychlorinated dibenzo-p-dioxins and dibenzofurans from chloroorganic precursors in activated sewage sludge and garden compost, paper presented at the International Conference on Naturally Produced Organohalogens, 19–24 September, Delft, The Netherlands.

    Google Scholar 

  • Oliver, B. G., and Nicol, K. D., 1982, Chlorobenzenes in sediments, water, and selected fish from lakes Superior, Huron, Erie, and Ontario, Environ. Sci. Technol. 16:532–536.

    Article  CAS  Google Scholar 

  • Oliver, B. G., and Niimi, A. J., 1988, Tropodynamic analysis of polychlorinated biphenyl congeners and other chlorinated hydrocarbons in Lake Ontario ecosystem, Environ. Sci. Technol. 22:388–397.

    Article  CAS  Google Scholar 

  • Oremland, R. S., Miller, L. G., and Strohmaier, F. E., 1994, Degradation of methyl bromide in anaerobic sediments, Environ. Sci. Technol. 28:514–520.

    Article  PubMed  CAS  Google Scholar 

  • Parsons, J. R., Opperhuizen, A., and Hutzinger, O., 1987, Influence of membrane permeation on biodegradation kinetics of hydrophobic compounds, Chemosphere 16:1361–1370.

    Article  CAS  Google Scholar 

  • Pearson, C. R., 1982, C1 and C2 halocarbons, in: The Handbook of Environmental Chemistry, Vol. 3B (O. Hutzinger, ed.), Springer-Verlag, Berlin, pp. 69–88.

    Google Scholar 

  • Peijnenburg, W. J. G. M., ’t Hart, M. J., den Hollander, H. A., van de Meent, D., Verboom, H. H., and Wolfe, N. L., 1991, QSARs for predicting biotic and abiotic reductive transformation rate constants of halogenated hydrocarbons in anoxic sediment systems, Sci. Total Environ. 109/110:283–300.

    Article  Google Scholar 

  • Peijnenburg, W. J. G. M., ’t Hart, M. J., den Hollander, H. A., van de Meent, D., Verboom, H. H., and Wolfe, N. L., 1992a, Reductive transformations of halogenated aromatic hydrocarbons in anaerobic water-sediment systems: Kinetics, mechanisms and products, Environ. Toxicol. Chem. 11:289–300.

    Article  CAS  Google Scholar 

  • Peijnenburg, W. J. G. M., ’t Hart, M. J., den Hollander, H. A., van de Meent, D., Verboom, H. H., and Wolfe, N. L., 1992b, QSARs for predicting reductive transformation rate constants of halogenated aromatic hydrocarbons in anoxic sediment systems, Environ. Toxicol. Chem. 11:301–314.

    Article  CAS  Google Scholar 

  • Petty, M. A., 1961, An introduction to the origin and biochemistry of microbial halometabolites, Bacteriol. Rev. 25:111–160.

    PubMed  CAS  Google Scholar 

  • Picardal, F. W., Arnold, R. G., Cough, H., Little, A. M., and Smith, M. E., 1993, Involvement of cytochromes in the anaerobic biotransformation of tetrachloromethane by Shewanella putrefaciens 200, Appl. Environ. Microbiol. 59:3763–3770.

    PubMed  CAS  Google Scholar 

  • Pries, F., van der Ploeg, J. R., Dolfing, J., and Janssen, D. B., 1994, Degradation of halogenated aliphatic compounds: The role of adaptation, FEMS Microbiol. Rev. 15:279–295.

    Article  PubMed  CAS  Google Scholar 

  • Quensen, III, J. F., Tiedje, J. M., and Boyd, S. A., 1988, Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science 242:752–754.

    Article  PubMed  CAS  Google Scholar 

  • Quensen, III, J. F., Boyd, S. A., and Tiedje, J. M., 1990, Dechlorination of four commercial polychlorinated biphenyl mixtures (Aroclors) by anaerobic microorganisms from sediments, Appl. Environ. Microbiol. 56:2360–2369.

    PubMed  CAS  Google Scholar 

  • Ramanand, K., Balba, M. T., and Duffy, J., 1993a, Reductive dehalogenation of chlorinated benzenes and toluenes under methanogenic conditions, Appl. Environ. Microbiol. 59:3266–3272.

    PubMed  CAS  Google Scholar 

  • Ramanand, K., Nagarajan, A., and Suflita, J. M., 1993b, Reductive dechlorination of the nitrogen heterocyclic herbicide picloram, Appl. Environ. Microbiol. 59:2251–2256.

    PubMed  CAS  Google Scholar 

  • Rapaport, R. A., and Eisenreich, S. J., 1988, Historical atmospheric inputs of high molecular weight chlorinated hydrocarbons to eastern North America, Environ. Sci. Technol. 22:931–941.

    Article  PubMed  CAS  Google Scholar 

  • Renard, P., Bouillon, C., Naveau, H., and Nyns, E.-J., 1993, Toxicity of a mixture of polychlorinated organic compounds towards an unacclimated methanogenic consortium, Biotechnol. Lett. 15:195–200.

    Article  CAS  Google Scholar 

  • Rhee, G.-Y., Sokol, R. C., Bush, B., and Bethoney, C. M., 1993a, Long-term study of anaerobic dechlorination of Aroclor 1254 with and without biphenyl enrichment, Environ. Sci. Technol 27:714–719.

    Article  CAS  Google Scholar 

  • Rhee, G.-Y., Bush, Bethoney, C. M., DeNucci, A., Oh, H.-M., and Sokol, R. C., 1993b, Reductive dechlorination of Aroclor 1242 in anaerobic sediments: Pattern, rate and concentration dependence, Environ. Toxicol. Chem. 12:1025–1032.

    Article  CAS  Google Scholar 

  • Rhee, G.-Y., Sokol, R. C., Bethoney, C. M., and Bush, B., 1993c, Dechlorination of polychlorinated biphenyls by Hudson river sediment organisms: Specificity to the chlorination pattern of congeners, Environ. Sci. Technol. 27:1190–1192.

    Article  CAS  Google Scholar 

  • Roberts, A. L., Sanborn, P. N., and Gschwend, P. M., 1992, Nucleophilic substitution reactions of dihalomethanes with hydrogen sulfide species, Environ. Sci. Technol. 26:2263–2274.

    Article  CAS  Google Scholar 

  • Safe, S., 1990, Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and related compounds: Environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs), Crit. Rev. Toxicol. 21:51–88.

    Article  PubMed  CAS  Google Scholar 

  • Schanke, C. A., and Wackett, L. P., 1992, Environmental reductive elimination reactions of polychlorinated ethanes mimicked by transition-metal coenzymes, Environ. Sci. Technol. 26:830–833.

    Article  CAS  Google Scholar 

  • Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E., and Diekert, G., 1995, Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strict anaerobic bacterium, Arch. Microbiol. 163:48–56.

    Article  CAS  Google Scholar 

  • Schrauzer, G. N., 1968, Organocobalt chemistry of vitamin B12 model compounds (cobaloximes), Acc. Chem. Res. 1:97–103.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., and Westall, J., 1981, Transport of nonpolar organic compounds from surface water to groundwater. Laboratory studies, Environ. Sci. Technol 15:1360–1367.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Molnar-Kubica, E., Giger, W., and Wakeham, S. G., 1979, Distribution, residence time, and fluxes of tetrachloroethylene and 1,4-dichlorobenzene in Lake Zürich, Switzerland, Environ. Sci. Technol. 13:1367–1373.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Giger, W., Hoehn, E., and Schneider, J. K., 1983, Behavior of organic compounds during infiltration of river water to groundwater. Field studies, Environ. Sci. Technol. 17:472–479.

    Article  PubMed  CAS  Google Scholar 

  • Schwarzenbach, R. P., Gschwend, P. M., and Imboden, D. M., 1993, Environmental Organic Chemistry, John Wiley & Sons, New York.

    Google Scholar 

  • Semprini, L., Hopkins, G. D., Roberts, P. V., and McCarty, P. L., 1991, In situ biotransformation of carbon tetrachloride, Freon-113, Freon-11 and 1,1,1-TCA under anoxic conditions, in: On-Site Bioreclamation Processes for Xenobiotic and Hydrocarbon Treatment (R. E. Hinchee, and R. F. Olfenbuttel, eds.), U.S.A. Reed Publishers, Newton, MA, pp. 41–58.

    Google Scholar 

  • Sheikh, Y. M., and Djerassi, C., 1975, 2,6-Dibromophenol and 2,4,6-tribromophenols—antiseptic secondary metabolites of Phoronopsis viridis, Experientia 31:265–266.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, D. R., and Tiedje, J. M., 1984, Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid, Appl. Environ. Microbiol. 48:840–848.

    PubMed  CAS  Google Scholar 

  • Shiu, W. Y., Doucette, W., Gobas, F. A. P. C., Andren, A., and Mackay, D., 1988, Physical-chemical properties of chlorinated dibenzo-p-dioxins, Environ. Sci. Technol. 22:651–658.

    Article  CAS  Google Scholar 

  • Sierra-Alvarez, R., and Lettinga, G., 1991, The effect of structure on the inhibition of acetoclastic methanogenesis in granular sludge, Appl. Environ. Microbiol. 34:544–550.

    CAS  Google Scholar 

  • Smith, M. H., and Woods, S. L., 1994, Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s, Appl. Environ. Microbiol. 60:4111–4115.

    PubMed  CAS  Google Scholar 

  • Sonier, D. N., Duran, N. L., and Smith, G. B., 1994, Dechlorination of trichlorofluoromethane (CFC-11) by sulfate-reducing bacteria from an aquifer contaminated with halogenated aliphatic compounds, Appl. Environ. Microbiol. 60:4567–4572.

    PubMed  CAS  Google Scholar 

  • Steiert, J. G., and Crawford, R. L., 1986, Catabolism of pentachlorophenol by a Flavobacterium sp., Biochem. Biophys. Res. Commun. 141:825–830.

    Article  PubMed  CAS  Google Scholar 

  • Stockdale, M., and Selwyn, M. J., 1971a, Influence of ring substituents on the action of phenols on some dehydrogenases, phosphokinases and the soluble ATPase from mitochondria, Eur. J. Biochem. 21:416–423.

    Article  PubMed  CAS  Google Scholar 

  • Stockdale, M., and Selwyn, M. J., 1971b, Influence of ring substituents on the activity of phenols as inhibitors and uncouplers of mitochondrial respiration, Eur. J. Biochem. 21:565–574.

    Article  PubMed  CAS  Google Scholar 

  • Stumm, W., and Morgan, J. J., 1981, Aquatic Chemistry, 2nd ed. Wiley-Interscience, New York.

    Google Scholar 

  • Sturm, R., and Gandrass, J., 1988, Verhalten von schwerflüchtigen chlorkohlenwasserstoffen an schwebstoffen des Elbe-ästuars, Vom Wasser 70:265–280.

    CAS  Google Scholar 

  • Suflita, J. M., Horowitz, A., Shelton, D. R., and Tiedje, J. M., 1982, Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds, Science 218:1115–1117.

    Article  PubMed  CAS  Google Scholar 

  • Symonds, R. B., Rose, W. I., and Reed, M. H., 1988, Contribution of Cl-and F bearing gases to the atmosphere by volcanoes, Nature 334:415–417.

    Article  CAS  Google Scholar 

  • Tanabe, S., 1988, PCB problems in the future: Foresight from current knowledge, Environ. Poll. 50:5–28.

    Article  CAS  Google Scholar 

  • Thauer, R. K., Jungermann, K., and Decker, K., 1977, Energy conservation in chemotrophic anaerobic bacteria, Bacteriol. Rev. 41:100–180.

    PubMed  CAS  Google Scholar 

  • Thayer, J. S., 1990, React metals, organic halides, and—water!?! Chemtech 20:188–191.

    CAS  Google Scholar 

  • Thayer, J. S., Olson, G. J., and Brinckman, F. E., 1984, Iodomethane as a potential metal mobilizing agent in nature, Environ. Sci. Technol. 18:726–729.

    Article  CAS  Google Scholar 

  • Thayer, J. S., Olson, G. J., and Brinckman, F. E., 1987, A novel flow process for metal and ore solubilization by aqueous methyl iodide, Appl. Organometal. Chem. 1:73–79.

    Article  CAS  Google Scholar 

  • Tiedje, J. M., Boyd, S. A., and Fathepure, B. Z., 1987, Anaerobic degradation of chlorinated aromatic hydrocarbons, Dev. Ind. Microbiol. 27:117–127.

    CAS  Google Scholar 

  • Traunecker, J., Preuss, A., and Diekert, G., 1991, Isolation and characterization of a methyl chloride utilizing, strictly anaerobic bacterium, Arch. Microbiol. 15:416–421.

    Article  Google Scholar 

  • Utkin, I., Woese, C., and Wiegel, J., 1994, Isolation and characterization of Desulfitobacter dehalogenans gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds, Int. J. Syst. Bact. 44:612–619.

    Article  CAS  Google Scholar 

  • Utkin, I., Dalton, D. D., and Wiegel, J., 1995, Specificity of reductive dehalogenation of substituted ortho-chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC-1, Appl. Environ. Microbiol. 61:346–351.

    PubMed  CAS  Google Scholar 

  • van den Tweel, W. J. J., Kok, J. B., and de Bont, J. A. M., 1987, Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-chloro-, 4-bromo-, and 4-iododbenzoate by Alcaligenes denitrificans NTB-1, Appl. Environ. Microbiol. 53:810–815.

    PubMed  Google Scholar 

  • van den Wijngaard, A. J., van der Kamp, K. W. H. J., van der Ploeg, J., Kazemier, B., Pries, F., and Janssen, D. B., 1992, Degradation of 1,2-dichloroethane by Ancylobacter aquaticus and other facultative methylotrophs, Appl. Environ. Microbiol. 58:976–983.

    PubMed  Google Scholar 

  • van der Meer, J. R., de Vos, W. M., Harayama, S., and Zehnder, A. J. B., 1992, Molecular mechanisms of genetic adaptation to xenobiotic compounds, Microbiol. Rev. 56:677–694.

    PubMed  Google Scholar 

  • VanDort, H. M., and Bedard, D. L., 1991, Reductive ortho and meta dechlorination of a polychlorinated biphenyl congener by anaerobic microorganisms, Appl. Environ. Microbiol. 57:1576–1578.

    CAS  Google Scholar 

  • Vannelli, T, and Hooper, A. B., 1993, Reductive dehalogenation of the trichloromethyl group of nitrapyrin by the ammonia-oxidizing bacterium Nitrosomonas europaea, Appl. Environ. Microbiol. 59:3597–3601.

    PubMed  CAS  Google Scholar 

  • van Zoest, R., and van Eck, G. T. M., 1991, Occurrence and behaviour of several groups of organic micropollutants in the Scheldt estuary, Sci. Total Environ. 103:57–71.

    Article  Google Scholar 

  • Vogel, T. M., Criddle, C. S., and McCarty, P. L., 1987, Transformations of halogenated aliphatic compounds, Environ. Sci. Technol. 21:722–736.

    Article  PubMed  CAS  Google Scholar 

  • Vogels, G. D., Keltjens, J. T., and van der Drift, C., 1988, Biochemistry of methane production, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), John Wiley & Sons, New York, pp. 707–770.

    Google Scholar 

  • Wiegel, J., Kohring, G.-W., Zhang, X., Utkin, I., Dalton, D., He, Z., Wu, Q., and Bedard, D., 1992, Temperature an important factor in the anaerobic transformation and degradation of chlorophenols and PCBs, in: Soil Decontamination Using Biological Processes, DECHEMA, Germany, pp. 101–108.

    Google Scholar 

  • Williams, W. A., 1994, Microbial reductive dechlorination of trichlorobiphenyls in anaerobic sediment slurries, Environ. Sci. Technol. 28:630–635.

    Article  PubMed  CAS  Google Scholar 

  • Winkels, H. J., Vink, J. P. M., Beurskens, J. E. M., and Kroonenberg, S. B., 1993, Distribution and geochronology of priority pollutants in a large sedimentation area, River Rhine, The Netherlands, Appl. Geochem. (Supp) 2:95–101.

    Article  CAS  Google Scholar 

  • Woods, S. L., and Smith, M. H., 1995, Regiospecificity of chlorophenol reductive dechlorination by vitamin B12s [letter to the editor], Appl. Environ. Microbiol. 61: 2450–2451.

    Google Scholar 

  • Xun, L., Topp, E., and Orser, C. Y., 1992, Purification and characterization of a tetrachloro-p-hydroquinone reductive dehalogenase from a Flavobacterium sp., J. Bacteriol. 174:8003–8007.

    PubMed  CAS  Google Scholar 

  • Zehnder, A. J. B., and Stumm, W., 1988, Geochemistry and biogeochemistry of anaerobic habitats, in: Biology of Anaerobic Microorganisms (A. J. B. Zehnder, ed.), John Wiley & Sons, New York, pp. 1–38.

    Google Scholar 

  • Zhang, X., and Wiegel, J., 1990, Sequential anaerobic degradation of 2,4-dichlorophenol in freshwater sediments, Appl. Environ. Microbiol. 56:1119–1127.

    PubMed  CAS  Google Scholar 

  • Zitomer, D. H., and Speece, R. E., 1993, Sequential environments for enhanced biotransformation of aqueous contaminants, Environ. Sci. Technol. 27:227–244.

    Article  Google Scholar 

  • Zoeteman, B. C. J., Harmsen, K., Linders, J. B. H. J., Morra, C. F. H., and Slooff, W., 1980, Persistent organic pollutants in river water and ground water of The Netherlands, Chemosphere 9:231–249.

    Article  CAS  Google Scholar 

  • Zwolsman, G. J., Sonneveldt, H. L. A., and Ruijgh, E. F. W., 1993, Onderzoek Noordelijk Deltabekken, Zuidrand. Toepassing accumulatiemodel waterbodem Hollands Diep, on-zekerheidsanalyse en calibratie. Delft Hydraulics Report No. T 262 (in Dutch).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Plenum Press, New York

About this chapter

Cite this chapter

Dolfing, J., Beurskens, J.E.M. (1995). The Microbial Logic and Environmental Significance of Reductive Dehalogenation. In: Jones, J.G. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7724-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7724-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7726-9

  • Online ISBN: 978-1-4684-7724-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics