Skip to main content

Abstract

One of the most important notions in connection with the study of analytic functions is that of analytic continuation. Several recent investigations have encountered situations where there is associated with an analytic function in a domain, another function analytic in a contiguous domain which can lay claim to being a “continuation” of the original function, even though the original function is nowhere continuable in the classical sense. Such a situation arises, for instance, if the first function has nontangential limiting values almost everywhere on some smooth arc of the boundary and the second function has identical nontangential limiting values almost everywhere on that arc. As follows from a theorem of Lusin and Privalov, the two functions then uniquely determine one another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Akutowicz and L. Carleson, “The analytic continuation of interpolatory functions,” J. Anal. Math. 7: 223–247 (1959/60).

    Article  MathSciNet  Google Scholar 

  2. S. Bochner and H. F. Bohnenblust, “Analytic functions with almost periodic coefficients, Ann. Math. 35: 152–161 (1934).

    Article  MathSciNet  Google Scholar 

  3. R. Douglas, H. S. Shapiro, and A. L. Shields, “On cyclic vectors of the backward shift,” Bull. Amer. Math. Soc. 73: 156–159 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. A. Gonchar, “On quasi-analytic continuation of analytic functions through a Jordan arc,” Doklady Akad. Nauk. U.S.S.R. 166: 1028–1031 (1966). (Russian).

    Google Scholar 

  5. R. Peterson, “Laplace Transformation of Almost Periodic Functions,” Eleventh Scandinavian Mathematical Congress (1949), 158–163.

    Google Scholar 

  6. I. I. Privalov, “Randeigenschaften Analytischer Funktionen,” Deutscher Verlag der Wissenschaften, 1956, p. 212.

    Google Scholar 

  7. H. S. Shapiro, “Weighted polynomial approximation and boundary behaviour of analytic functions,” in Contemporary Problems of the Theory of Analytic Functions, Nauka, Moscow (1966), p. 326–335.

    Google Scholar 

  8. H. S. Shapiro, “Overconvergence of sequences of rational functions with sparse poles,” Arkiv. för Matematik, 1968 (in press).

    Google Scholar 

  9. H. S. Shapiro, “Smoothness of the boundary function of a holomorphic function of bounded type, and the generalized maximum principle,” Arkiv. för Matematik 1968 (in press).

    Google Scholar 

  10. J. Wolff, “Sur les séries \(\sum {A_k } /(z - \alpha _k ),\),” Comptes Rendus, 173: 1057–1058, 1327-1328(1921).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alladi Ramakrishnan (Director of the Institute)

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Plenum Press

About this chapter

Cite this chapter

Shapiro, H.S. (1968). Generalized Analytic Continuation. In: Ramakrishnan, A. (eds) Symposia on Theoretical Physics and Mathematics 8. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7721-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7721-4_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7723-8

  • Online ISBN: 978-1-4684-7721-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics