Skip to main content

Creep Mechanisms and Their Role in the Sintering of Metal Powders

  • Chapter
Modern Developments in Powder Metallurgy

Abstract

Material transport in sintering of loose metal powder aggregates and of powder compacts with or without an external load can be considered as creep. Creep takes place under the influence of stresses due to surface tension forces, to externally applied forces including gravity, or to internal stresses. Creep mechanisms important in sintering include slip controlled by dislocation climb and creep due to movement of vacancies from boundaries under tensile to those under compressive stress (Herring-Nabarro microcreep). The type of creep mechanism involved in any particular sintering experiment depends primarily on the temperature and the level of stress. Stresses due to surface tension forces may be calculated by applying the virtual work concept to the change in geometry of particle aggregates during sintering. By determining the rates involved in sintering, such as increase in contact area between particles or shrinkage rate, as a function of temperature and of stress, the type of creep mechanism can be identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lenel, F. V., H. H. Hausner, E. Hayashi, and G. S. Ansell, Powder Met. 8: 25 (1961).

    Google Scholar 

  2. Lenel, F. V., H. H. Hausner, O. V. Roman, and G. S. Ansell, Trans. Met. Soc. AIME 227: 640 (1963).

    Google Scholar 

  3. Lenel, F. V., H. H. Hausner, I. A. Shanshoury, J. G. Early, and G. S. Ansell, Powder Met. 10: 190 (1962).

    Google Scholar 

  4. Herring, G, in: W. E. Kingston (ed.), The Physics of Powder Metallurgy, McGraw-Hill (New York), 1951, p. 143.

    Google Scholar 

  5. Nabarro, F. R. N., Report on a Conference on the Strength of Materials, The Physical Society (London), 1948, p. 75.

    Google Scholar 

  6. Herring, C., J. Appl. Phys. 21: 437 (1950).

    Article  Google Scholar 

  7. Udin, H., A. Shaler, and J. Wulff, Trans. AIME 185: 186 (1949).

    Google Scholar 

  8. Pranatis, A. L., and G. M. Pound, Trans. AIME 203: 664 (1955).

    Google Scholar 

  9. Alexander, B. H., G. L. Kuczynski, and M. H. Dawson, in: W. E. Kingston (ed.), The Physics of Powder Metallurgy, McGraw-Hill (New York), 1951, p. 202.

    Google Scholar 

  10. Buttner, F. H., H. Udin, J. Wulff, Trans. AIME 194: 401 (1952).

    Google Scholar 

  11. Greenough, A. P., Phil Mag. 43: 1075 (1952).

    Google Scholar 

  12. Kuczynski, G. G, Trans. AIME 185: 169 (1949).

    Google Scholar 

  13. Friedel, J., in: G. Thomas and J. Washburn (eds.), Electron Microscopy and Strength of Crystals, Interscience (New York), 1963, p. 605.

    Google Scholar 

  14. Price, P. B., Friedel, J., in: G. Thomas and J. Washburn (eds.), Electron Microscopy and Strength of Crystals, Interscience (New York), 1963, p. 41.

    Google Scholar 

  15. Bartlett, J. T., and J. W. Michell, Phil. Mag. 5: 445 (1960).

    Article  Google Scholar 

  16. Weertman, J., J. Appl. Phys. 28: 1185 (1957).

    Article  Google Scholar 

  17. Weertman, J., J. Appl. Phys. 28: 1185 (1957), p. 362.

    Article  Google Scholar 

  18. Weertman, J., Trans. Met. Soc. AIME 218: 207 (1960).

    Google Scholar 

  19. Ansell, G. S., and J. Weertman, Trans. AIME 215: 309 (1950).

    Google Scholar 

  20. McLean, D., in: Vacancies and Other Point Defects in Metals and Alloys, The Institute of Metals (London), 1958.

    Google Scholar 

  21. Early, J. G., F. V. Lenel, and G. S. Ansell, Trans. Met. Soc. AIME 230: 1641 (1964).

    Google Scholar 

  22. Leary, E. A., to be published.

    Google Scholar 

  23. Burr, M. F., Ph.D. Thesis, Dept. of Materials Engineering, Rensselaer Polytechnic Institute (Troy, New York), August 1964. See also M. F. Burr, F. V. Lenel, and G. S. Ansell, “Influence of Pressure on the Sintering Kinetics of Silver,” to be published.

    Google Scholar 

  24. Seigle, L., Progr. Powder Met. 20: 221 (1964).

    Google Scholar 

  25. Kingery, W. D., and M. Berg, J. Appl. Phys. 26: 1205 (1955).

    Article  Google Scholar 

  26. Pines, B. Ya., Usp. Fiz. Nauk 54: 501 (1954).

    Google Scholar 

  27. Brett, J., and L. Seigle, “Fundamentals of Sintering, VII, Final Report,” AEC Contract AT (30–1) 2102, Dec. 15, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Metal Powder Industries Federation and The Metallurgical Society of AIME

About this chapter

Cite this chapter

Lenel, F.V., Ansell, G.S. (1966). Creep Mechanisms and Their Role in the Sintering of Metal Powders. In: Hausner, H.H. (eds) Modern Developments in Powder Metallurgy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7706-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7706-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7708-5

  • Online ISBN: 978-1-4684-7706-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics