Skip to main content

The Utilization of Carbohydrates by Animal Cells

An Approach to Their Biochemical Genetics

  • Chapter

Abstract

Animal cells in culture, in marked contrast to microorganisms (Chapters 10–12), are able to grow on only a limited number of carbohydrates other than glucose. The early literature contains a number of reports on the ability of carbohydrates to support growth of various cell types (Eagle et al., 1958; Morgan and Morton, 1960) but some investigations are open to the criticism that they did not take fully into account the facts that many commercially available carbohydrates are contaminated with glucose, that serum itself contains glucose, and that the cells may thus really have been utilizing glucose.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aithal, H. N., Walsh-Reitz, M. M., and Toback, F. G., 1983, Appearance of a cytosolic protein that stimulates glyceraldehyde-3-phosphate dehydrogenase activity during initiation of renal epithelial cell growth, Proc. Natl. Acad. Sci. USA 80: 2941–2945.

    Article  PubMed  CAS  Google Scholar 

  • Amos, H., Leventhal, M., Chu, L., and Karnovsky, M. J., 1976, Modifications of mammalian cell surfaces induced by sugars: Scanning electron microscopy, Cell 7: 97–103.

    Article  PubMed  CAS  Google Scholar 

  • Ardawi, M. S. M., and Newsholme, E. A., 1982, Maximum activities of some enzymes of glycolysis, the tricarboxylic acid cycle and ketone-body and glutamine utilisation pathways in lymphocytes of the rat, Biochem. J. 208: 743–748.

    PubMed  CAS  Google Scholar 

  • Arinze, I. J., Raghunathan, R., and Russell, J. D., 1978, Induction of mitochondrial phosphoenolpyruvate carboxykinase in cultured human fibroblasts, Biochim. Biophys. Acta 531: 792–804.

    Google Scholar 

  • Attenello, J. W., and Lee, A. S., 1984, Regulation of a hybrid gene by glucose and temperature in hamster fibroblasts, Science 226: 187–190.

    Article  PubMed  CAS  Google Scholar 

  • Avner, P., Dubois, P., Nicolas, J. F., Jakob, H., Gaillard, J., and Jacob, F., 1977, Mouse teratocarcinoma: Carbon source utilisation patterns for growth and in vitro differentiation, Exp. Cell Res. 105: 39–50.

    Article  PubMed  CAS  Google Scholar 

  • Bailey, J. M., Gey, G. O., and Gey, M. K., 1959, The carbohydrate nutrition and metabolism of a strain of mammalian cells (MB III strain of mouse lymphoblasts) growing in vitro, J. Biol. Chem. 234: 1042–1047.

    PubMed  CAS  Google Scholar 

  • Benn, P. A., Kelley, R. I., Mellman, W. J., Amer, L., Boches, F. S., Markus, H. B., Nichols, W., and Hoffman, B., 1981, Reversion from deficiency of galactose 1-phosphate uridyltransferase (GALT) in an SV40-transformed human fibroblast line, Somat. Cell Genet. 7: 667–682.

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti, R., 1977a, A selective system for hepatoma cells producing gluconeogenic enzymes, Somat. Cell Genet. 3: 365–380.

    Article  PubMed  CAS  Google Scholar 

  • Bertolotti, R., 1977b, Expression of differentiated functions in hepatoma cell hybrids: Selection in glucose-free media of segregated hybrid cells which re-express gluconeogenic enzymes, Somat. Cell Genet. 3: 579–602.

    Article  PubMed  CAS  Google Scholar 

  • Bishayee, S., and Das, M., 1981, Aberrant energy metabolism in a variant epidermal growth factor receptor-negative fibroblastic cell line, FEBS Lett. 127: 237–240.

    Article  PubMed  CAS  Google Scholar 

  • Bloch, R., Betschart, B., and Burger, M. M., 1977, Cell culture in serum depleted of glycosidases by heating, Exp. Cell Res. 104: 143–152.

    Article  PubMed  CAS  Google Scholar 

  • Blomquist, C. H., Gregg, C. T., and Tobey, R. A., 1971, Enzyme and co-enzyme levels, oxygen uptake and lactate production in synchronised cultures of Chinese hamster cells, Exp. Cell Res. 66: 75–80.

    Article  PubMed  CAS  Google Scholar 

  • Bruni, P., Faranraro, M., Vasta, V., and D’Alessandro, A., 1983, Increase of the glycolytic rate in human resting fibroblasts following serum stimulation: The possible role of the fructose 2,6bisphosphate, FEBS Lett. 159: 39–42.

    Article  PubMed  CAS  Google Scholar 

  • Burns, R. L., Rossenberger, P. G., and Klebe, R. J., 1976, Carbohydrate preferences of mammalian cells, J. Cell. Physiol. 88: 307–316.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante, E., and Pedersen, P. L., 1977, High aerobic glycolysis of rat hepatoma cells in culture: Role of mitochondrial hexokinase, Proc. Natl. Acad. Sci. USA 74: 3735–3739.

    Article  PubMed  CAS  Google Scholar 

  • Bustamante, E., Morris, H. P., and Pedersen, P. L., 1981, Energy metabolism of tumour cells: Requirement for a hexokinase with a propensity for mitochondrial binding, J. Biol. Chem. 256: 8699–8704.

    PubMed  CAS  Google Scholar 

  • Cassio, D., 1984, Re-expression of hepatic functions in mouse hepatoma x rat hepatoma hybrids, Differentiation 26: 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Y. T., Mattison, D. R., Feigenbaum, L., Fukui, H., and Schulman, J. D., 1981, Reduction in oocyte number following prenatal exposure to a diet high in galactose, Science 214: 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Clayton, D. F., and Darnell, J. E., 1983, Changes in liver-specific compared to common gene transcription during primary culture of mouse hepatocytes, Mol. Cell. Biol. 3: 1552–1561.

    PubMed  CAS  Google Scholar 

  • Cogoli, A., Tschopp, A., and Fuchs-Bislin, P., 1984, Cell sensitivity to gravity, Science 225: 228–230.

    Article  PubMed  CAS  Google Scholar 

  • Colby, C., and Romano, A. H., 1974, Phosphorylation but not transport of sugars is enhanced in virus-transformed mouse 3T3 cells, J. Cell. Physiol. 85: 15–24.

    Article  Google Scholar 

  • Cooper, J. A., Reiss, N. A., Schwartz, R. J., and Hunter, T., 1983, Three glycolytic enzymes are phosphorylated at tyrosine in cells transformed by Rous sarcoma virus, Nature 302: 218–223.

    Article  PubMed  CAS  Google Scholar 

  • Cox, R. P., and Gesner, B. M., 1965, Effect of simple sugars on the morphology and growth pattern of mammalian cell cultures, Proc. Natl. Acad. Sci. USA 54: 1571–1579.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, R. H., and Morse, M. L., 1979, Differential metabolism of mannose by Chinese hamster cell lines, Exp. Cell Res. 121: 277–282.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, R. H., Morrissey, A., Puck, T. T., and Morse, M. L., 1976, Carbohydrate energy sources for Chinese hamster cells in culture, Proc. Soc. Exp. Biol. Med. 153: 251–253.

    PubMed  CAS  Google Scholar 

  • Demetrakopoulos, G. E., and Amos, H., 1976, D-Xylose and xylitol: Previously unrecognised sole carbon and energy sources for chick and mammalian cells, Biochem. Biophys. Res. Commun. 72: 1169–1176.

    Article  PubMed  CAS  Google Scholar 

  • Demetrakopoulos, G. E., Gonzalez, F., Colofiore, J., and Amos, H., 1977, Growth of chick and mammalian cells on D-xylose, Exp. Cell Res. 106: 167–173.

    Article  PubMed  CAS  Google Scholar 

  • Deschatrette, J., and Weiss, M. C., 1974, Characterisation of differentiated and dedifferentiated clones from a rat hepatoma, Biochimie 56: 1603–1611.

    Article  PubMed  CAS  Google Scholar 

  • Deschatrette, J., Moore, E. E., Dubois, M., and Weiss, M. C., 1980, Dedifferentiated variants of a rat hepatoma: Reversion analysis, Cell 19: 1043–1051.

    Article  PubMed  CAS  Google Scholar 

  • Diamond, I., Legg, A., Schneider, J. A., and Rozengurt, E., 1978, Glycolysis in quiescent cultures of 3T3 cells: Stimulation by serum, epidermal growth factor, and insulin in intact cells and persistence of the stimulation after cell homogenization, J. Biol. Chem. 253: 866–871.

    PubMed  CAS  Google Scholar 

  • D’Urso, M., Mareni, C., Toniolo, D., Piscopo, M., Schlessinger, D., and Luzzatto, L., 1983, Regulation of glucose 6-phosphate dehydrogenase expression in CHO—human fibroblast somatic cell hybrids, Somat. Cell Genet. 9: 429–443.

    Article  PubMed  Google Scholar 

  • Eagle, H., Barban, S., Levy, M., and Schulze, H. O., 1958, The utilisation of carbohydrates by human cell cultures, J. Biol. Chem. 233: 551–558.

    CAS  Google Scholar 

  • Emerman, J. T., Bartley, J. C., and Bissell, M. J., 1981, Glucose metabolite patterns as markers of functional differentiation in freshly isolated and cultured mouse mammary epithelial cells, Exp. Cell Res. 134: 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Faik, P., and Morgan, M. J., 1976, Carbohydrate metabolism in Chinese hamster cells, Biochem. Soc. Trans. 4: 1043–1045.

    PubMed  CAS  Google Scholar 

  • Faik, P., and Morgan, M. J., 1977a, A method of isolation of Chinese hamster cell variants with an altered ability to utilise carbohydrates, Cell Biol. Int. Rep. 1: 555–562.

    Article  PubMed  CAS  Google Scholar 

  • Faik, P., and Morgan, M. J., 1977b, Properties of carbohydrate utilising variants of Chinese hamster cells, Cell Biol. Int. Rep. 1: 563–570.

    Article  PubMed  CAS  Google Scholar 

  • Faik, P., and Morgan, M. J., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of variants able to utilise lactate, Biochem. Soc. Trans. 8: 632–633.

    PubMed  CAS  Google Scholar 

  • Faik, P., and Morgan, M. J., 1984, Regulation of hexose uptake in Chinese hamster ovary cells, Biochem. Soc. Trans. 12: 10.

    Google Scholar 

  • Faik, P., Rawson, S., Walker, J. H., and Morgan, M. J., 1986, Introduction of human phosphoglycerate kinase (PGK) cDNA into a PGK-deficient line of Chinese hamster ovary cells, Genet. Res.,in press.

    Google Scholar 

  • Fodge, D. W., and Rubin, H., 1973, Activation of phosphofructokinase by stimulants of cell multiplication, Nature 246: 181–183.

    Article  CAS  Google Scholar 

  • Fukushima, N., Cohen-Khallas, M., and Kalant, N., 1981, Galactose and glucose metabolism by cultured hepatocytes: Responsiveness to insulin and the effect of age, Dev. Biol. 84: 359–363.

    Article  PubMed  CAS  Google Scholar 

  • Giovanni, M. Y., Kessel, D., and Gluck, M. C., 1981, Specific monosaccharide inhibition of active sodium channels in neuroblastoma cells, Proc. Natl. Acad. Sci. USA 78: 1250–1254.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, S. H., and Bose, S. K., 1977, Density-dependent changes in hexose transport, glycolytic enzyme levels and glycolytic rates, in uninfected and murine sarcoma virus-transformed rat kidney cells, Exp. Cell Res. 110: 387–397.

    Article  PubMed  CAS  Google Scholar 

  • Gregory, S. H., and Bose, S. K., 1979, Glycolytic enzyme activities in malignant cells grown in vitro and in vivo, Cancer Lett. 7: 319–324.

    Article  PubMed  CAS  Google Scholar 

  • Gunn, J. M., Shinozuka, H., and Williams, G. M., 1975, Enhancement of phenotypic expression in cultured malignant liver epithelial cells by a complex medium, J. Cell. Physiol. 87: 79–89.

    Article  Google Scholar 

  • Halban, P. A., Praz, G. A., and Wollheim, C. B., 1983, Abnormal glucose metabolism accompanies failure of glucose to stimulate insulin release from a rat pancreatic cell line (RINm5F), Biochem. J. 212: 439–443.

    PubMed  CAS  Google Scholar 

  • Harris, M., and Kutsky, P. B., 1953, Utilisation of added sugars by chick heart fibroblasts in dialysed media, J. Cell. Comp. Physiol. 42: 449–466.

    Article  CAS  Google Scholar 

  • Hers, H. G., and Van Schaftingen, E., 1982, Fructose 2,6-bisphosphate 2 years after its discovery, Biochem. J. 206: 1–12.

    PubMed  CAS  Google Scholar 

  • Hill, H. Z., 1976, The effect of pH on incorporation of galactose by a normal human cell line and cell lines from patients with defective galactose metabolism, J. Cell. Physiol. 87: 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Hoffee, P., Jargiello, P., Zaner, L., and Martin, J., 1977, Pentose utilising variants of Novikoff hepatoma cells: Modification of growth and morphological properties, J. Cell. Physiol. 91: 3950.

    Article  Google Scholar 

  • Hutz, M. H., Michelson, A. M., Antonarakis, S. E., Orkin, S. H., and Kazazian, H. H., 1984, Restriction site polymorphism in the phosphoglycerate kinase gene on the X chromosome, Hum. Genet. 66: 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Isaka, T., Yoshida, M., Owada, M., and Toyoshima, K., 1975, Alterations in membrane polypeptides of chick embryo fibroblasts induced by transformation with avian sarcoma viruses, Virology 65: 226–237.

    Article  PubMed  CAS  Google Scholar 

  • Jargiello, P., 1978, Pentose utilising variants of Novikoff hepatoma cells: Phenotypic characterisation, Somat. Cell Genet. 4: 647–660.

    Article  PubMed  CAS  Google Scholar 

  • Jargiello, P., 1980, Multiple genetic changes determine ribose utilisation by Novikoff hepatoma cell variants, Biochim. Biophys. Acta 632: 507–516.

    Article  PubMed  CAS  Google Scholar 

  • Jargiello, P., 1982, Altered expression of ribokinase activity in Novikoff hepatoma variants, Biochim. Biophys. Acta 698: 78–85.

    PubMed  CAS  Google Scholar 

  • Johnson, G. S., and Schwartz, J. P., 1976, Effects of sugars on the physiology of cultured fibroblasts, Exp. Cell Res. 97: 281–290.

    Article  PubMed  CAS  Google Scholar 

  • Kajstura, J., and Korohoda, W., 1983, Significance of energy metabolism pathways for stimulation of DNA synthesis by cell migration and serum, Eur. J. Cell Biol. 31: 9–14.

    PubMed  CAS  Google Scholar 

  • Kielty, C. M., Povey, S., and Hopkinson, D. A., 1981, Regulation of expression of liver-specific enzymes. 1. Detection in mammalian tissues and cultured cells, Ann. Hum. Genet. 45: 341–356.

    Article  PubMed  CAS  Google Scholar 

  • Kielty, C. M., Povey, S., and Hopkinson, D. A., 1982, Regulation of expression of liver-specific enzymes. 3. Further analysis of a series of rat hepatoma x human somatic cell hybrids, Ann. Hum. Genet. 46: 307–327.

    Article  PubMed  CAS  Google Scholar 

  • Kletzien, R. F., and Perdue, J. F., 1974, Sugar transport in chick embryo fibroblasts, III. Evidence for host-transcriptional and host-translational regulation of transport following serum addition, J. Biol. Chem. 249: 3383–3387.

    CAS  Google Scholar 

  • Krooth, R. S., and Weinberg, A. N., 1961, Studies on cell lines developed from the tissues of patients with galactosemia, J. Exp. Med. 113: 1155–1171.

    Article  PubMed  CAS  Google Scholar 

  • Kuchka, M., Markus, H. B., and Mellman, W. J., 1981, Influence of hexose conditions on glutamine oxidation of SV40-transformed and diploid fibroblast human cell lines, Biochem. Med. 26: 356–364.

    Article  PubMed  CAS  Google Scholar 

  • Landau, B. R., and Wood, H. G., 1983, The pentose cycle in animal tissues: Evidence for the classical and against the `L-type’ pathway, Trends Biochem. Sci. 8: 292–296.

    CAS  Google Scholar 

  • Lanks, K. W., 1983, Metabolite regulation of heat shock protein levels, Proc. Natl. Acad. Sci. USA 80: 5325–5329.

    Article  PubMed  CAS  Google Scholar 

  • Lazo, P. A., 1981, Amino acids and glucose utilisation by different metabolic pathways in ascites-tumour cells, Eur. J. Biochem. 117: 19–25.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. S., 1981, The accumulation of three specific proteins related to glucose-regulated proteins in a temperature-sensitive hamster mutant cell line K12, J. Cell. Physiol. 106: 119–125.

    Article  PubMed  CAS  Google Scholar 

  • Lee, A. S., Bell, J., and Ting, J., 1984, Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts, J. Biol. Chem. 259: 4616–4621.

    PubMed  CAS  Google Scholar 

  • Levilliers, J., and Weiss, M. C., 1983, Differentiation is not restored in hybrids between independent variants of a rat hepatoma, Somat. Cell Genet. 9: 407–413.

    Article  PubMed  CAS  Google Scholar 

  • Lin, A. Y., and Lee, A. S., 1984, Induction of two genes by glucose starvation in hamster fibroblasts, Proc. Natl. Acad. Sci. USA 81: 988–992.

    Article  PubMed  CAS  Google Scholar 

  • McGowan, J. A., Russell, W. E., and Bucher, L. R., 1984, Hepatocyte DNA replication: Effect of nutrients and intermediary metabolites, Fed. Proc. 43: 131–133.

    PubMed  CAS  Google Scholar 

  • McKeehan, W. L., 1984, Control of normal and transformed cell proliferation by growth factor—nutrient interactions, Fed. Proc. 43: 113–115.

    PubMed  CAS  Google Scholar 

  • McKeehan, W. L., McKeehan, K. A., and Calkins, D., 1982, Epidermal growth factor modifies Cat+, Mg2+ and 2-oxocarboxylic acid, but not K+ and phosphate ion requirement for multiplication of human fibroblasts, Exp. Cell Res. 140: 25–30.

    Article  PubMed  CAS  Google Scholar 

  • Maiti, I. B., Comlan de Souza, A., and Thirion, J. P., 1981, Biochemical and genetic characterization of respiration-deficient mutants of Chinese hamster cells with a Gal phenotype, Somat. Cell Genet. 7: 567–582.

    Article  PubMed  CAS  Google Scholar 

  • Malaisse, W. J., Malaisse-Lagae, F., Sener, A., Van Schaftingen, E., and Hers, H. G., 1981, Is the glucose-induced stimulation of glycolysis in pancreatic islets attributable to activation of phosphofructokinase by fructose 2,6-bisphosphate?, FEBS Lett. 125: 217–219.

    Article  PubMed  CAS  Google Scholar 

  • Meglasson, M. D., and Matschinsky, F. M., 1984, New perspectives on pancreatic islet glucokinase, Am. J. Physiol. 246: E1 - E13.

    PubMed  CAS  Google Scholar 

  • Melnykovych, G. and Bishop, C. F., 1972, Utilisation of hexoses and synthesis of glycogen in two strains of HeLa cells, In Vitro 7: 397–405.

    PubMed  CAS  Google Scholar 

  • Michelson, A. M., Markham, A. F., and Orkin, S. H., 1983, Isolation and DNA sequence of a full-length cDNA clone for human X chromosome-encoded phosphoglycerate kinase, Proc. Natl. Acad. Sci. USA 80: 427–476.

    Article  Google Scholar 

  • Miwa, S., Nakashima, K., Oda, S., Ogawa, H., Nakafuji, H., Arlma, M., Okuna, T., Nakashima, T., 1972, Phosphoglycerate kinase (PGK) deficiency hereditary nonspherocytic hemolytic anemia: Report of a case found in a Japanese family, Acta Haematol. Jpn. 35: 570–574.

    Google Scholar 

  • Moore, E. E., and Weiss, M. C., 1982, Selective isolation of stable and unstable dedifferentiated variants from a rat hepatoma cell line, J. Cell. Physiol. 111: 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J., and Morton, H., 1960, Carbohydrate utilisation by chick embryonic heart cultures, Can. J. Biochem. Physiol. 35: 69–78.

    Article  Google Scholar 

  • Morgan, M. J., 1981, The pentose phosphate pathway: Evidence for the indispensable role of glucose-phosphate isomerase, FEBS Lett. 130: 124–126.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. J., and Faik, P., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of a glycolytic variant of Chinese hamster ovary cells, Cell Biol. Int. Rep. 4: 121–127.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. J., and Faik, P., 1981, Carbohydrate metabolism in cultured animal cells, Biosci. Rep. 1: 669–686.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. J., Faik, P., and Walker, S. W., 1980, The regulation of carbohydrate metabolism in animal cells: Isolation of a glycolytic variant, Biochem. Soc. Trans. 8: 631–632.

    PubMed  CAS  Google Scholar 

  • Morgan, M. J., Bowness, K. M., and Faik, P., 1981, Regulation of carbohydrate metabolism in cultured mammalian cells: Energy provision in a glycolytic mutant, Biosci. Rep. 1: 811–817.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, M. J., Bowness, K. M., and Faik, P., 1983a, Energy provision in Chinese hamster ovary cells, Biochem. Soc. Trans. 11: 725–726.

    CAS  Google Scholar 

  • Morgan, M. J., Faik, P., and Calvert, J., 1983b, Genetics of carbohydrate metabolism in animal cells, Genet. Res. 41: 307.

    Google Scholar 

  • Nepokroeff, C. M., Lakshmann, M. R., Ness, G. C., Muesing, R. A., Kleinsek, D. A., and Porter, J. W., 1974, Co-ordinate control of rat liver lipogenic enzymes by insulin. Arch. Biochem. Biophys. 162: 340–344.

    Article  PubMed  CAS  Google Scholar 

  • Ovadi, J., and Keleti, T., 1978, Kinetic evidence for interaction between aldolase and Dglyceraldehyde-3-phosphate dehydrogenase, Eur. J. Biochem. 85: 157–161.

    Article  PubMed  CAS  Google Scholar 

  • Pauwels, P. J., Opperdoes, F. R., and Trouet, A., 1984, Effect of oxygen and glucose availability on the glycolytic rate in neuroblastoma cells under different conditions of culture, Neurochem. Int. 6: 467–473.

    Article  PubMed  CAS  Google Scholar 

  • Piechaczyk, M., Blanchard, J. M., Riaad-EI Sabouty, S., Dani, C., Marty, L, and Jeanteur, P., 1984, Unusual abundance of vertebrate 3-phosphate dehydrogenase pseudogenes, Nature 312: 469–471.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, M., Appay, M. D., Simon-Assman, P., Chevalier, G., Dracopoli, N., Fogh, J., and Zweibaum, A., 1982, Enterocytic differentiation of cultured human colon cancer cells by replacement of glucose by galactose in the medium, Biol. Cell. 44: 193–196.

    CAS  Google Scholar 

  • Pouysségur, J., Shiu, R. P. C., and Pastan, I., 1977, Induction of two transformation-sensitive membrane polypeptides in normal fibroblasts by a block in glycoprotein synthesis or glucose deprivation, Cell 11: 941–947.

    Article  PubMed  Google Scholar 

  • Pouysségur, J., Franchi, A., Salomon, J.-C., and Silvestre, P., 1980, Isolation of a Chinese hamster fibroblast mutant defective in hexose transport and aerobic glycolysis: Its use to dissect the malignant phenotype, Proc. Natl. Acad. Sci. USA 77: 2698–2701.

    Article  PubMed  Google Scholar 

  • Racker, E., 1976, Why do tumour cells have a high aerobic glycolysis?, J. Cell. Physiol. 89: 697–700.

    Article  PubMed  CAS  Google Scholar 

  • Racker, E., 1984, Resolution and reconstitution of biological pathways from 1919 to 1984, Fed. Proc. 42: 2899–2909.

    Google Scholar 

  • Racker, E., Johnson, J. H., and Blackwell, M. D., 1983, The role of ATPase in glycolysis of Ehrlich ascites tumour cells, J. Biol. Chem. 258: 3702–3705.

    PubMed  CAS  Google Scholar 

  • Reitzer, L. J., Wise, B. M., and Kennel, D., 1980, The pentose cycle: Control and essential function in HeLa cell nucleic acid synthesis, J. Biol. Chem. 255: 5616–5626.

    PubMed  CAS  Google Scholar 

  • Rheinwald, J. G., and Green, H., 1974, Growth of cultured mammalian cells on secondary glucose sources, Cell 2: 287–293.

    Article  PubMed  CAS  Google Scholar 

  • Romano, A. H., and Connell, N. D., 1982a, 6-Deoxy-D-glucose and D-xylose, analogs for the study of D-glucose transport by mouse 3T3 cells, J. Cell. Physiol. 111: 77–82.

    Google Scholar 

  • Romano, A. H., and Connell, N. D., 1982b, Effect of glucose uptake on growth rate of mouse 3T3 cells, J. Cell. Physiol. 111: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Rosenstraus, M., and Chasin, L. A., 1975, Isolation of mammalian cell mutants deficient in glucose 6-phosphate dehydrogenase activity: Linkage to hypoxanthine phosphoribosyltransferase, Proc. Natl. Acad. Sci. USA 72: 493–497.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. D., and De Mars, R., 1967, UDP glucose: a-n-galactose-l-phosphate uridyl transferase activity in cultured human fibroblasts, Biochem. Genet. 1: 11–24.

    Article  PubMed  CAS  Google Scholar 

  • Scannell, J., and Morgan, M. J., 1980, The regulation of carbohydrate metabolism in animal cells: Growth on starch and maltose, Biochem. Soc. Trans. 8: 633–634.

    PubMed  CAS  Google Scholar 

  • Scannell, J., and Morgan, M. J., 1982, The regulation of carbohydrate metabolism in animal cells: Isolation of starch-and maltose-utilising variants, Biosci. Rep. 2: 99–106.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, J. A., Diamond, I., and Rozengurt, E., 1978, Glycolysis in quiescent cultures of 3T3 cells: Addition of serum, epidermal growth factor, and insulin increases the activity of phosphofructokinase in a protein synthesis-indepedent manner, J. Biol. Chem. 253: 872–877.

    PubMed  CAS  Google Scholar 

  • Schwartz, J. P., and Johnson, G. S., 1976, Metabolic effects of glucose deprivation and of various sugars in normal and transformed fibroblast cell lines, Arch. Biochem. Biophys. 173: 237–245.

    Article  PubMed  CAS  Google Scholar 

  • Sens, D. A., Hochstadt, B., and Amos, H., 1982, Effects of pyruvate on the growth of normal and transformed hamster embryo fibroblasts, J. Cell. Physiol. 110: 329–335.

    Article  PubMed  CAS  Google Scholar 

  • Silnutzer, J., and Jargiello, P., 1981, Extinction and expression of the ribose-positive phenotype in hybrid Novikoff hepatoma cells, Somat. Cell Genet. 7: 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Singer-Sam, J., Simmer, R. L., Keith, D. M., Shirley, L., Teplitz, M., Itakura, K., Gartler, S. M., and Riggs, A. D., 1983, Isolation of a cDNA clone for human X-linked 3-phosphoglycerate kinase by use of a mixture of synthetic oligodeoxyribonucleotides as a detection probe, Proc. Natl. Acad. Sci. USA 80: 802–806.

    Article  PubMed  CAS  Google Scholar 

  • Singh, M., Singh, V. N., August, G. T., and Horecker, B. L., 1974a, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Transformation-specific changes in the activities of key enzymes of the glycolytic and hexose monophosphate shunt pathways, Arch. Biochem. Biophys. 165: 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Singh, M., Singh, V. N., August, G. T., and Horecker, B. L., 1974b, Alterations in glucose metabolism in chick embryo cells transformed by Rous sarcoma virus: Intracellular levels of glycolytic intermediates, Proc. Nad. Acad. Sci. USA 71: 4129–4132.

    Article  CAS  Google Scholar 

  • Smith, M. L., and Buchanan, J. M., 1979, Nucleotide and pentose synthesis after serum-stimulation of resting 3T6 fibroblasts, J. Cell. Physiol. 101: 293–310.

    Article  PubMed  CAS  Google Scholar 

  • Sols, A., Cadenas, E., and Alvarado, F., 1960, Enzymatic basis of mannose toxicity in honey bees, Science 131: 297–298.

    Article  PubMed  CAS  Google Scholar 

  • Stern, E. S., and Krooth, R. S., 1975, Studies on the regulation of the three enzymes of the Leloir pathway in cultured mammalian cells: Effect of substitution of galactose for glucose as the sole hexose in the medium in human diploid cell strains and in a rat hepatoma line, J. Cell. Physiol. 86: 91–103.

    Article  PubMed  CAS  Google Scholar 

  • Stone, E. M., Rothblum, K. N., and Schwartz, R. J., 1985, Intron-dependent evolution of chicken glyceraldehyde phosphate dehydrogenase gene, Nature 313: 498–500.

    Article  PubMed  CAS  Google Scholar 

  • Stone, K. R., Smith, R. E., and Joklik, W. K., 1974, Changes in membrane polypeptides that occur when chick embryo fibroblasts and NRK cells are transformed with avian sarcoma viruses, Virology 58: 86–100.

    Article  PubMed  CAS  Google Scholar 

  • Sun, N. C., Chang, C. C., and Chu, E. H. Y., 1975, Mutant hamster cells exhibiting a pleiotropic effect on carbohydrate metabolism, Proc. Natl. Acad. Sci. USA 72: 469–473.

    Article  PubMed  CAS  Google Scholar 

  • Tschopp, A., and Cogoli, A., 1983, Hypergravity promotes cell proliferation, Experientia 12: 1323–1329.

    Article  Google Scholar 

  • Usanga, E. A., and Luzzatto, L., 1985, Adaption of Plasmodium falciparum to glucose 6-phosphate dehydrogenase-deficient host red cells by production of parasite-encoded enzyme, Nature 313: 793–795.

    Article  PubMed  CAS  Google Scholar 

  • Venetianer, A., and Bosze, Z., 1983, Expression of differentiated functions in dexamethasoneresistant hepatoma cells, Differentiation 25: 70–78.

    Article  PubMed  CAS  Google Scholar 

  • Vozdev, V. A., 1976, Role of the pentose phosphate pathway in metabolism of D. melanogaster elucidated by mutations affecting glucose 6-phosphate and 6-phosphate gluconate dehydrogenase, FEBS Lett. 64: 85–88.

    Article  Google Scholar 

  • Wagner, K. R., Kauffman, F. C., and Max, S. R., 1978, The pentose phosphate pathway in regenerating skeletal muscle, Biochem. J. 170: 17–22.

    PubMed  CAS  Google Scholar 

  • Walker, D. G., 1966, The nature and function of hexokinases in animal tissues, in: Essays in Biochemistry, Vol. 2 ( P. N. Campbell and G. D. Greville, eds.), pp. 33–67, Academic Press, New York.

    Google Scholar 

  • Wang, T., Marquardt, C., and Foker, J., 1976, Aerobic glycolyses during lymphocyte proliferation, Nature 261: 702–705.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T., Foker, J. E., and Tsai, M. Y., 1980, The shift of an increase in phosphofructokinase activity from protein synthesis-dependent to -independent mode during concanavalin A induced lymphocyte proliferation, Biochem. Biophys. Res. Commun. 95: 13–19.

    Article  PubMed  CAS  Google Scholar 

  • Webber, M. J., Evans, P. K., Johnson, M. A., McNair, T. S., Nakamura, K. D., and Salter, D. W., 1984, Transport of potassium, amino acids, and glucose in cells transformed by Rous sarcoma virus, Fed. Proc. 43: 107–112.

    Google Scholar 

  • Whitfield, C. D., Buchsbaum, B., Bostedor, R., and Chu, E. H. Y., 1978, Inverse relationship between galactokinase activity and 2-deoxygalactose resistance in Chinese hamster ovary cells, Somat. Cell Genet. 4: 699–713.

    Article  PubMed  CAS  Google Scholar 

  • Williams, J. F., 1980, A critical examination of the evidence for the reactions of the pentose pathway in animal tissue, Trends Biochem. Sci. 5: 315–320.

    Article  CAS  Google Scholar 

  • Williams, J. F., Arora, K. K., and Longenecker, J. F., 1983, The F-pentose cycle doesn’t have the answers for liver tissue, Trends Biochem. Sci. 8: 275–277.

    Article  CAS  Google Scholar 

  • Wohlhueter, R. M., and Plagemann, P. G. W., 1981, Hexose transport and phosphorylation by Novikoff rat hepatoma cells as a function of extracellular pH, J. Biol. Chem. 256: 869–875.

    PubMed  CAS  Google Scholar 

  • Wolfrom, C., Loriette, C., Polini, G., Delhotal, B., Lemonnier, F.; and Gautier, M., 1983, Comparative effects of glucose and fructose on growth and morphological aspects of cultured skin fibroblasts, Exp. Cell Res. 149: 535–546.

    Article  PubMed  CAS  Google Scholar 

  • Yoshida, A., and Miwa, S., 1974, Characterisation of a phosphoglycerate kinase variant associated with haemolytic anaemia, Am. J. Hum. Genet. 26: 378–384.

    PubMed  CAS  Google Scholar 

  • Ziegler, M. L., and Davidson, R. L., 1979, The effect of hexose on chloramphenicol sensitivity and resistance in Chinese hamster cells, J. Cell. Physiol. 98: 627–637.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Morgan, M.J., Faik, P. (1986). The Utilization of Carbohydrates by Animal Cells. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics