Skip to main content

Active Transport of Sugars into Escherichia coli

  • Chapter
Carbohydrate Metabolism in Cultured Cells

Abstract

Bacteria often inhabit environments where nutrients are in short supply, and different species must compete with each other for the available carbohydrates. Accordingly, they expend metabolic energy in order to sequester the sugars and achieve intracellular concentrations sufficient for optimal growth rates. Escherichia call can grow on at least 20 different carbohydrates or related compounds (Hays, 1978; Silhavy et al., 1978), but the strategies for energizing their initial transport across the cytoplasmic membrane fall into four general classes. One of these, where the sugar is phosphorylated using phosphoenolpyruvate during the translocation, is described in detail in Chapter 10. The others, where transport is energized either by a gradient of H+, by a gradient of Na+, or by a phosphorylated compound, are discussed in this chapter. The properties of the individual sugar transport systems will be reviewed, but they will be grouped according to these three classes of energization mechanism. First, however, the underlying concepts and experimental strategies involved in investigations of bacterial transport will be outlined (Sections 1 and 2). This chapter is aimed at the newcomer to the field, but it is hoped that the arrangement of the sections will enable the specialist to turn directly to topical areas of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abou-Sabé, M., and Richman, J., 1973a, On the regulation of D-ribose metabolism in Escherichia coli B/r I, Mol. Gen. Genet. 122: 291–301.

    PubMed  Google Scholar 

  • Abou-Sabé, M., and Richman, J., 1973b, On the regulation of D-ribose metabolism in Escherichia coli B/r II, Mol. Gen. Genet. 122: 303–312.

    Google Scholar 

  • Adler, J., 1975, Chemotaxis in bacteria, Annu. Rev. Biochem. 44: 341–356.

    PubMed  CAS  Google Scholar 

  • Adler, J., Hazelbauer, G. L., and Dahl, M. M., 1973, Chemotaxis toward sugars in Escherichia coli, J. Bacteriol. 115: 824–847.

    PubMed  CAS  Google Scholar 

  • Ahlem, C., Huisman, W., Neslund, G., and Dahms, A. S., 1982, Purification and properties of a periplasmic D-xylose-binding protein from Escherichia coli K-12, J. Biol. Chem. 257: 2926–2931.

    PubMed  CAS  Google Scholar 

  • Amanuma, H., and Anraku, Y., 1974, Transport of sugars and amino acids in bacteria. XII. Substrate specificities of the branched chain amino acid-binding proteins of Escherichia coli, J. Biochem. 76: 1165–1173.

    PubMed  CAS  Google Scholar 

  • Ames, G. F.-L., Prody, C., and Kustu, S., 1984, Simple, rapid and quantitative release of periplasmic proteins by chloroform, J. Bacteriol. 160: 1181–1183.

    PubMed  CAS  Google Scholar 

  • Anderson, A., and Cooper, R. A., 1970, Biochemical and genetical studies on ribose catabolism in Escherichia coli K-12, J. Gen. Microbiol. 62: 335–339.

    PubMed  CAS  Google Scholar 

  • Anraku, Y., 1968, Purification and specificity of the galactose-and leucine-binding proteins, J. Biol. Chem. 243: 3116–3122.

    PubMed  CAS  Google Scholar 

  • Anraku, Y., 1978, Active transport of amino acids, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 171–219, Dekker, New York.

    Google Scholar 

  • Argos, P., Mahoney, W. C., Hermodson, M. A., and Hanei, M., 1981, Structural prediction of sugar-binding proteins functional in chemotaxis and transport, J. Biol. Chem. 256: 4357–4361.

    PubMed  CAS  Google Scholar 

  • Bachmann, B. J., 1983, Linkage map of Escherichia coli K-12, edition 7, Microbiol. Rev. 47: 180–230.

    PubMed  CAS  Google Scholar 

  • Bavoil, S., Hofnung, M., and Nikaido, H., 1980, Identification of a cytoplasmic membrane-associated component of the maltose transport system of Escherichia coli, J. Biol. Chem. 255: 8366–8369.

    PubMed  CAS  Google Scholar 

  • Beckwith, J. R., and Zipser, D. (eds.), 1970, The Lactose Operon, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Berger, E. A., 1973, Different mechanisms of energy coupling for the active transport of praline and glutamine in Escherichia coli, Proc. Natl. Acad. Sci. USA 70: 1514–1518.

    PubMed  CAS  Google Scholar 

  • Berger, E. A., and Heppel, L. A., 1974, Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli, J. Biol. Chem. 249: 7747–7755.

    PubMed  CAS  Google Scholar 

  • Beverin, S., Sheppard, D. E., and Park, S. S., 1971, D-Fucose as a gratuitous inducer of the Larabinose operon in strains of Escherichia coli B/r mutant in gene araC, J. Bacteriol. 107: 79–86.

    PubMed  CAS  Google Scholar 

  • Beyreuther, K., Bieseler, B., Ehring, R., and Müller-Hill, B., 1981, Identification of internal residues of lactose permease of Escherichia coli by radiolabel sequencing of peptide mixtures, In: Methods in Protein Sequence Analysis ( M. Elzina, ed.), pp. 139–148, Humana Press, Clifton, N.J.

    Google Scholar 

  • Boonstra, J., Huttunen, M. T., Konings, W. N., and Kaback, H. R., 1975, Anaerobic transport in Escherichia coli membrane vesicles, J. Biol. Chem. 250: 6792–6798.

    PubMed  CAS  Google Scholar 

  • Boos, W., 1969, The galactose binding protein and its relationship to the ß-methylgalactoside permease from Escherichia coli, Eur. J. Biochem. 10: 66–73.

    PubMed  CAS  Google Scholar 

  • Boos, W., 1974, Bacterial transport, Annu. Rev. Biochem. 43: 123–146.

    PubMed  CAS  Google Scholar 

  • Boos, W., Steinacher, I., and Engelhardt-Altendorf, D., 1982, Mapping of mg!B, the structural gene of the galactose-binding protein of E. coli, Mol. Gen. Genet. 184: 508–518.

    Google Scholar 

  • Bradley, S. A., Tinsley, C. R., and Henderson, P. J. F., 1986, Proton-linked L-fucose transport in Escherichia coli, submitted for publication.

    Google Scholar 

  • Brass, J. M., Boos, W., and Hengge, R., 1981, Reconstitution of maltose transport in ma1B mutants of Escherichia coli through calcium-induced disruptions of the outer membrane, J. Bacteriol. 146: 10–17.

    PubMed  CAS  Google Scholar 

  • Brass, J. M., Ehmann, U., and Bukau, B., 1983, Reconstitution of maltose transport in Escherichia coli, J. Bacteriol. 155: 97–106.

    PubMed  CAS  Google Scholar 

  • Bremer, E., Silhavy, T. J., Weisemann, J. M., and Weinstock, G. M., 1984, kplacMu: A transposable derivative of bacteriophage lambda for creating lac Z protein fusions in a single step, J. Bacteriol. 158: 1084–1093.

    PubMed  CAS  Google Scholar 

  • Briggs, K. A., Lancashire, W. E., and Hartley, B. S., 1984, Molecular cloning: DNA structure and expression of the Escherichia coli D-xylose isomerase, EMBO J. 3: 611–616.

    Google Scholar 

  • Brown, C. E., and Hogg, R. W., 1972, A second transport system for L-arabinose in Escherichia coli B/r controlled by the araC gene, J. Bacteriol. 111: 606–613.

    PubMed  CAS  Google Scholar 

  • Michel, D. E., Gronenborn, B., and Müller-Hill, B., 1980, Sequence of the lactose permease gene, Nature 283: 541–545.

    Google Scholar 

  • Burstein, C., and Kepes, A., 1971, The a-galactosidase from Escherichia coli K12, Biochim. Biophys. Acta 230: 52–63.

    PubMed  CAS  Google Scholar 

  • Buttin, G., 1968, Les systémes enzymatiques inducibles du metabolisme des oses chez Escherichia coli, Adv. Enzymol. 30: 81–137.

    PubMed  CAS  Google Scholar 

  • Cairney, J., Higgins, C. F., and Booth, I. R., 1984, Praline uptake through the major transport system (PP-I: putP) of Salmonella typhimurium is coupled to sodium ions, J. Bacteriol. 160: 22–27.

    PubMed  CAS  Google Scholar 

  • Carrasco, N., Herzlinger, D., Mitchell, R., Dechiara, S., Danho, W., Gabriel, T. F., and Kaback, H. R., 1984a, Intramolecular dislocation of the -CO2 H terminus of the lac carrier protein in reconstituted proteoliposomes, Proc. Natl. Acad. Sci. USA 81: 4672–4676.

    PubMed  CAS  Google Scholar 

  • Carrasco, N., Viitanen, P., Herzlinger, D., and Kaback, H. R., 1984b, Monoclonal antibodies against the lac carrier protein forEscherichia colt. 1. Functional studies, Biochemistry 23: 3681–3687.

    PubMed  CAS  Google Scholar 

  • Casadaban, M. J., and Cohen, S. N., 1979, Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: In vivo probe for transcriptional control sequences, Proc. Natl. Acad. Sci. USA 76: 4530–4533.

    PubMed  CAS  Google Scholar 

  • Chappell, J. B., 1968, Systems used for the transport of substrates into mitochondria, Br. Med. Bull. 24: 150–157.

    PubMed  CAS  Google Scholar 

  • Clark, A. F., and Hogg, R. W., 1981, High-affinity arabinose transport mutants of Escherichia colt: Isolation and gene location, J. Bacteriol. 147: 920–924.

    PubMed  CAS  Google Scholar 

  • Clarke, L., and Carbon, J., 1976, A colony bank containing synthetic Col El hybrid plasmids representative of the entire E. colt genome, Cell 9: 91–99.

    PubMed  CAS  Google Scholar 

  • Clément, J. M., and Hofnung, M., 1981, Gene sequences of the X receptor, an outer membrane protein of Escherichia colt K12, Cell 27: 507–514.

    PubMed  Google Scholar 

  • Cockrell, R. S., Harris, E. J., and Pressman, B. C., 1967, Synthesis of ATP driven by a potassium gradient in mitochondria, Nature 215: 1487–1488.

    PubMed  CAS  Google Scholar 

  • Cohn, D. E., and Kaback, H. R., 1980, Mechanism of the melibiose porter in membrane vesicles of Escherichia coli, Biochemistry 19: 4237–4243.

    PubMed  CAS  Google Scholar 

  • Colowick, S. P., and Womack, F. C., 1969, Binding of diffusible molecules by macromolecules: Rapid movement by rate of dialysis, J. Biol. Chem. 244: 774–777.

    PubMed  CAS  Google Scholar 

  • Copeland, B. R., Richter, R. J., and Furlong, C. E., 1982, Renaturation and identification of periplasmic proteins in two-dimensional gels of Escherichia colt, J. Biol. Chem. 257: 15065–15071.

    PubMed  CAS  Google Scholar 

  • Costello, M. J., Viitanen, P., Carrasco, N., Foster, D. L., and Kaback, H. R., 1984, Morphology of proteoliposomes reconstituted with purified lac carrier protein from Escherichia coli, J. Biol. Chem. 259: 15579–15586.

    PubMed  CAS  Google Scholar 

  • Curtis, S. J., 1974, Mechanism of energy coupling for transport of D-ribose in Escherichia coli, J. Bacteriol. 120: 295–303.

    PubMed  CAS  Google Scholar 

  • Daruwalla, K., 1979, The energisation of sugar transport systems in bacteria, Ph.D. thesis, University of Cambridge.

    Google Scholar 

  • Daruwalla, K. R., Paxton, A. T., and Henderson, P. J. F., 1981, Energization of the transport systems for arabinose and comparison with galactose transport in Escherichia coli, Biochem. J. 200: 611–627.

    PubMed  CAS  Google Scholar 

  • Dassa, E., and Hofnung, M., 1985, Sequence of gene malG in E. colt K12, EMBO J. 4: 2287–2293.

    Google Scholar 

  • David, J. D., and Wiesmeyer, H., 1970a, Control of xylose metabolism in Escherichia coli, Biochim. Biophys. Acta 201: 497–499.

    PubMed  CAS  Google Scholar 

  • David, J. D., and Wiesmeyer, H., 1970b, Regulation of ribose catabolism in Escherichia coli: The ribose catabolic pathway, Biochim. Biophys. Acta 208: 45–55.

    PubMed  CAS  Google Scholar 

  • Davis, E. O., Jones-Mortimer, M. C., and Henderson, P. J. F., 1984, Location of a structural gene for xylose-H+ symport at 91 min on the linkage map of Escherichia coil K12, J. Biol. Chem. 259: 1520–1525.

    PubMed  CAS  Google Scholar 

  • Debarbouillé, M., and Schwartz, M., 1980, Mutants which make more malT product, the activator of the maltose regulon in Escherichia coli, Mol. Gen. Genet. 178: 589–595.

    PubMed  Google Scholar 

  • Di Renzio, J. M., Nakamura, K., and Inouye, M., 1978, The outer membrane proteins of gramnegative bacteria: Biosynthesis, assembly, and functions, Annu. Rev. Biochem. 47: 481–532.

    Google Scholar 

  • Duplay, P., Bedouelle, H., Fowler, A., Zabin, I., Saurin, W., and Hofnung, M., 1984, Sequences of the malE gene and of its product, the maltose-binding protein of Escherichia coli K12, J. Biol. Chem. 259: 10606–10613.

    PubMed  CAS  Google Scholar 

  • Ehring, R., Beyreuther, K., Wright, J. K., and Overath, P., 1980, In vitro and in vivo products of E. coli lactose permease gene are identical, Nature 283: 537–540.

    PubMed  CAS  Google Scholar 

  • Englesberg, E., Irr, J., Power, J., and Lee, N., 1965, Positive control of enzyme synthesis by gene C in the L-arabinose system, J. Bacteriol. 90: 946–957.

    PubMed  CAS  Google Scholar 

  • Ferenci, T., 1980, Methyl-a-maltoside and 5-thiomaltose; analogues transported by the Escherichia coli maltose transport system, J. Bacteriol. 144: 7–11.

    PubMed  CAS  Google Scholar 

  • Ferenci, T., and Boos, W., 1980, The role of the Escherichia coli X receptor in the transport of maltose and maltodextrins, J. Supramol. Struct. 13: 101–116.

    PubMed  CAS  Google Scholar 

  • Ferenci, T., and Klotz, U., 1978, Affinity chromatography isolation of the periplasmic maltose binding protein of Escherichia coli, FEBS Lett. 94: 213–217.

    PubMed  CAS  Google Scholar 

  • Ferenci, T., Boos, W., Schwartz, M., and Szmelcman, S., 1977, Energy coupling of the transport system of Escherichia coli dependent on maltose-binding protein, Eur. J. Biochem. 75: 187–195.

    PubMed  CAS  Google Scholar 

  • Flagg, J. L., and Wilson, T. H., 1977, A protonmotive force as the source of energy for galactoside transport in energy depleted Escherichia coli, J. Membr. Biol. 31: 233–255.

    PubMed  CAS  Google Scholar 

  • Foster, D., Boublik, M., and Kaback, H. R., 1983, Structure of the lac carrier protein of Escherichia coli, J. Biol. Chem. 258: 31–34.

    PubMed  CAS  Google Scholar 

  • Foster, D. L., Garcia, M. L., Newman, M. J., Patel, L., and Kaback, H. R., 1982, Lactose-proton symport by purified lac carrier protein, Biochemistry 21: 5634–5638.

    PubMed  CAS  Google Scholar 

  • Frank, L., and Hopkins, I., 1969, Sodium-stimulated transport of glutamate in Escherichia coli, J. Bacteriol. 100: 329–336.

    PubMed  CAS  Google Scholar 

  • Froshauer, S., and Beckwith, J., 1984, The nucleotide sequence of the gene for malF protein, an inner membrane component of the maltose transport system of Escherichia coli, J. Biol. Chem. 259: 10896–10903.

    PubMed  CAS  Google Scholar 

  • Futai, M., 1978, Experimental systems for the study of active transport in bacteria, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 7–41, Dekker, New York.

    Google Scholar 

  • Futai, M., and Kanazawa, H., 1983, Structure and function of proton-translocating adenosine triphosphatase (F0F1): Biochemical and molecular biological approaches, Microbiol. Rev. 47: 285–312.

    PubMed  CAS  Google Scholar 

  • Gabay, J., Schenkman, S., Desaymard, C., and Schwartz, M., 1985, Monoclonal antibodies and the structure of bacterial membrane proteins, In: Monoclonal Antibodies Against Bacteria (A. S. L. Macario and C. de Macario, eds.), pp. 249–282, Academic Press, New York.

    Google Scholar 

  • Galloway, D. R., and Furlong, C. E., 1977, The role of ribose-binding protein in transport and chemotaxis in Escherichia coli K-12, Arch. Biochem. Biophys. 184: 496–504.

    PubMed  CAS  Google Scholar 

  • Ganesan, A. K., and Rotman, B., 1966, Genetic determination and regulation of the methylgalactoside permease, J. Mol. Biol. 16: 42–50.

    PubMed  CAS  Google Scholar 

  • Garcia, M. L., Viitanen, P., Foster, D. L., and Kaback, H. R., 1983, Mechanism of lactose translocation in proteoliposomes reconstituted with lac carrier protein purified from Escherichia coli, Biochemistry 22: 2524–2531.

    PubMed  CAS  Google Scholar 

  • Gilson, E., Higgins, C. F., Hofnung, M., Ames, G. F.-L., and Nikaido, J., 1982, Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli, J. Biol. Chem. 257: 9915–9918.

    PubMed  CAS  Google Scholar 

  • Glynn, I. M., 1967, Involvement of a membrane potential in the synthesis of ATP by mitochondria, Nature 216: 1318–1319.

    PubMed  CAS  Google Scholar 

  • Goldkorn, T., Rimon, G., and Kaback, H. R., 1983, Topology of the Lac carrier protein in the membrane of Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 3322–3326.

    PubMed  CAS  Google Scholar 

  • Goldkorn, T., Rimon, G., Kempner, E. S., and Kaback, H. R., 1984, Functional molecular weight of the lac carrier protein from Escherichia coli as studied by radiation inactivation analysis, Proc. Natl. Acad. Sci. USA 81: 1021–1025.

    PubMed  CAS  Google Scholar 

  • Groarke, J. M., Mahoney, W. C., Hope, J. N., Furlong, C. E., Robb, F. T., Zalkin, H., and Hermodson, M. A., 1983, The amino acid sequence of D-ribose-binding protein from Escherichia coli K12, J. Biol. Chem. 258: 12952–12956.

    PubMed  CAS  Google Scholar 

  • Haddock, B. A., and Jones, C. W., 1977, Bacterial respiration, Bacteriol. Rev. 41: 47–99.

    PubMed  CAS  Google Scholar 

  • Hamilton, W. A., 1975, Energy coupling in microbial transport, Adv. Microb. Physiol. 12: 1–53.

    CAS  Google Scholar 

  • Hanatani, M., Yazyu, H., Shiota-Niiya, S., Moriyama, Y., Kanazawa, H., Futai, M., and Tsuchiya, T., 1984, Physical and genetic characterization of the melibiose operon and identification of the gene products in Escherichia coli, J. Biol. Chem. 259: 1807–1812.

    PubMed  CAS  Google Scholar 

  • Harayama, S., Bollinger, J., Iino, T., and Hazelbauer, G. L., 1983, Characterization of the mgl operon of Escherichia coli by transposon mutagenesis and molecular cloning, J. Bacteriol. 153: 408–415.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1972, Conservation and transformation of energy by bacterial membranes, Bacteriol. Rev. 36: 172–230.

    PubMed  CAS  Google Scholar 

  • Harold, F. M., 1977, Membranes and energy transduction in bacteria, Curr. Top. Bioenerg. 6: 83–149.

    CAS  Google Scholar 

  • Hays, J. B., 1978, Group translocation transport systems, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 43–102, Dekker, New York.

    Google Scholar 

  • Hazelbauer, G. L., and Adler, J., 1971, Role of galactose-binding protein in chemotaxis of Escherichia coli toward galactose, Nature New Biol. 230: 101–104.

    PubMed  CAS  Google Scholar 

  • Hazelbauer, G. L., and Harayama, S., 1979, Mutants in transmission of chemotactic signals from two independent receptors of E. coli, Cell 16: 617–625.

    CAS  Google Scholar 

  • Heffeman, L., Bass, R., and Englesberg, E., 1976, Mutations affecting catabolite repression of the Larabinose regulon in Escherichia coli B/r, J. Bacteriol. 126: 1119–1131.

    Google Scholar 

  • Heinz, E., and Weinstein, A. M., 1984, The overshoot phenomenon in cotransport, Biochim. Biophys. Acta 776: 83–91.

    PubMed  CAS  Google Scholar 

  • Heller, K. B., Lin, E. C. C., and Wilson, T. H., 1980, Substrate specificity and transport properties of the glycerol facilitator of Escherichia coli, J. Bacteriol. 144: 274–278.

    PubMed  CAS  Google Scholar 

  • Henderson, P. J. F., 1974, Application of the chemiosmotic theory to the transport of lactose, D-galactose, and L-arabinose by Escherichia coli, In: Comparative Biochemistry and Physiology of Transport ( L. Bolis, K. Bloch, S. E. Luria, and F. Lynen, eds.), pp. 409–424, North-Holland, Amsterdam.

    Google Scholar 

  • Henderson, P. J. F., and Giddens, R. A., 1977, 2-Deoxy-D-galactose, a substrate for the galactose-transport system of Escherichia coli, Biochem. J. 168:15–22.

    PubMed  CAS  Google Scholar 

  • Henderson, P. J. F., and Kornberg, H. L., 1975, The active transport of carbohydrates of Escherichia coli, Ciba Found. Symp. 31: 243–269.

    PubMed  CAS  Google Scholar 

  • Henderson, P. J. F., and Skinner, A., 1974, Association of proton movements with the galactose and arabinose transport systems of Escherichia coli, Biochem. Soc. Trans. 2: 543–545.

    CAS  Google Scholar 

  • Henderson, P. J. F., Dilks, S. N., and Giddens, R. A., 1975, pH changes associated with the transport of sugars by Escherichia coli, Proc. 10th FEBS Meet., 20:43–53.

    Google Scholar 

  • Henderson, P. J. F., Giddens, R. A., and Jones-Mortimer, M. C., 1977, Transport of galactose, glucose and their molecular analogues by Escherichia coli K12, Biochem. J. 162: 309–320.

    PubMed  CAS  Google Scholar 

  • Henderson, P. J. F., Bradley, S., MacPherson, A. J. S., Home, P., Davis, E. O., Daruwalla, K. T., and Jones-Mortimer, M. C., 1984, Sugar-proton transport systems of Escherichia coli, Biochem. Soc. Trans. 12: 146–148.

    PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P. N. T., 1975, Three-dimensional model of purple membrane obtained by electron microscopy, Nature New Biol. 257: 28–32.

    CAS  Google Scholar 

  • Hendrickson, W., and Schleif, R. F., 1984, Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay, J. Mol. Biol. 174: 611–628.

    Google Scholar 

  • Hengge, R., and Boos, W., 1983, Maltose and lactose transport in Escherichia coli, examples of two different types of concentrative transport systems, Biochim. Biophys. Acta 737: 443–478.

    PubMed  CAS  Google Scholar 

  • Herzberg, E., and Hinkle, P., 1974, Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli, Biochem. Biophys. Res. Commun. 58: 178–184.

    Google Scholar 

  • Herzlinger, D., Viitanan, P., Carrasco, N., and Kaback, H. R., 1984, Monoclonal antibodies against the lac carrier protein from Escherichia coli. 2. Binding studies with membrane vesicles and proteoliposomes reconstituted with purified lac carrier protein, Biochemistry 23: 3688–3693.

    PubMed  CAS  Google Scholar 

  • Herzlinger, D., Carrasco, N., and Kaback, H. R., 1985, Functional and immunochemical characterization of a mutant of Escherichia coli energy uncoupled for lactose transport, Biochemistry 24: 221–229.

    PubMed  CAS  Google Scholar 

  • Higgins, C. F., Haag, P. D., Nikaido, K., Ardeshir, F., Garcia, G., and Ames, G.F.-L., 1982, Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium, Nature 298: 723–727.

    PubMed  CAS  Google Scholar 

  • Higgins, C. F., Hiles, I. D., Whalley, K., and Jamieson, D. J., 1985, Nucleotide binding by membrane components of bacterial periplasmic binding protein-dependent transport systems, EMBO J. 4: 1033–1040.

    Google Scholar 

  • Hobson, A. C., Weatherwax, R., and Ames, G. F.-L., 1984, ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system, Proc. Natl. Acad. Sci. USA 81: 7333–7337.

    PubMed  CAS  Google Scholar 

  • Hogg, R. W., 1977, L-Arabinose transport and the L-arabinose binding protein of Escherichia coli, J. Supramol. Struct. 6: 411–417.

    PubMed  CAS  Google Scholar 

  • Hogg, R. W., and Englesberg, E., 1969, L-Arabinose binding protein from Escherichia coli B/r, J. Bacteriol. 100: 423–431.

    PubMed  CAS  Google Scholar 

  • Hogg, R. W., and Hermodson, M. A., 1977, Amino acid sequence of the L-arabinose-binding protein from Escherichia coli B/r, J. Biol. Chem. 252: 5135–5141.

    PubMed  CAS  Google Scholar 

  • Hong, J.-S., Hunt, A. G., Masters, P. S., and Lieberman, M. A., 1979, Requirement of acetyl phosphate for the binding protein-dependent transport systems in Escherichia coli, Proc. Natl. Acad. Sci. USA 76: 1213–1217.

    PubMed  CAS  Google Scholar 

  • Horecker, B. L., Thomas, J., and Monod, J., 1960, Galactose transport in Escherichia coli, J. Biol. Chem. 235: 1580–1590.

    PubMed  CAS  Google Scholar 

  • Home, P., 1980, Galactose transport into membrane vesicles, Ph.D. thesis, University of Cambridge.

    Google Scholar 

  • Horne, P., and Henderson, P. J. F., 1983, The association of proton movement with galactose transport into subcellular membrane vesicles of Escherichia coli, Biochem. J. 210: 699–705.

    PubMed  CAS  Google Scholar 

  • Hugenholtz, J., Hong, J.-S., and Kaback, M. R., 1981, ATP-driven transport in right-side-out bacterial membrane vesicles, Proc. Nat. Acad. Sci. USA 78: 3446–3449.

    PubMed  CAS  Google Scholar 

  • Hunt, A. G., and Hong, J.-S., 1981, The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli, J. Biol. Chem. 256: 11988–11991.

    PubMed  CAS  Google Scholar 

  • Iida, A., Harayama, S., Iino, T., and Hazelbauer, G. L., 1984, Molecular cloning and characterization of genes required for ribose transport and utilization in Escherichia coli K-12, J. Bacteriol. 158: 674–682.

    PubMed  CAS  Google Scholar 

  • Ingledew, W. S., and Poole, R. K., 1984, The respiratory chains of Escherichia coli, Microbiol. Rev. 48: 222–271.

    PubMed  CAS  Google Scholar 

  • Inouye, M. (ed.), 1979, Bacterial Outer Membranes, Wiley, New York.

    Google Scholar 

  • Jagendorf, A. T., and Uribe, E., 1966, ATP formation caused by acid-base transition of spinach chloroplasts, Proc. Natl. Acad. Sci. USA 55: 170–177.

    PubMed  CAS  Google Scholar 

  • Jobe, A., and Bourgeois, S., 1972, Lac repressor operator interaction. VI. The natural inducer of the lac operon, J. Mol. Biol. 69: 397–408.

    PubMed  CAS  Google Scholar 

  • Jones, T. H. D., and Kennedy, E. P., 1969, Characterization of the membrane protein of the lactose transport system of Escherichia coli, J. Biol. Chem. 244: 5981–5987.

    PubMed  CAS  Google Scholar 

  • Jones-Mortimer, M. C., and Henderson, P. J. F., 1986, Use of transposons to isolate and characterise mutants lacking membrane proteins, illustrated by the sugar transport systems of Escherichia coli, Methods Enzymol. 125: 157–180.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1971, Bacterial membranes, Methods Enzymol. 22: 99–120.

    Google Scholar 

  • Kaback, H. R., 1972, Transport across isolated bacterial cytoplasmic membranes, Biochim. Biophys. Acta 265: 367–416.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1974, Transport studies in bacterial membrane vesicles, Science 186: 882–892.

    PubMed  CAS  Google Scholar 

  • Kaback, H. R., 1977, Molecular biology and energetics of membrane transport, In: Biochemistry of Membrane Transport ( G. Semenza and E. Carafoli, eds.), pp. 598–625, Springer-Verlag, Berlin.

    Google Scholar 

  • Kaback, H. R., 1983, The Lac carrier protein in Escherichia coli, J. Membr. Biol. 76: 95–112.

    PubMed  CAS  Google Scholar 

  • Kaczorowski, G. J., and Kaback, H. R., 1979, Effect of pH on efflux, exchange and counterflow of lactose translocation in membrane vesicles from Escherichia coli, Biochemistry 18: 3691–3697.

    PubMed  CAS  Google Scholar 

  • Kaczorowski, G. J., LeBlanc, G., and Kaback, H. R., 1980, Specific labelling of the lac carrier protein in membrane vesicles of Escherichia coli by a photoaffinity reagent, Proc. Natl. Acad. Sci. USA 77: 6319–6323.

    PubMed  CAS  Google Scholar 

  • Kagawa, Y., 1978, Reconstitution of the energy transformer, gate and channel, subunit reassembly, crystalline ATPase and ATP synthesis, Biochim. Biophys. Acta 505: 45–93.

    PubMed  CAS  Google Scholar 

  • Kagawa, Y., 1984, Proton motive ATP synthesis, In: Bioenergetics ( L. Ernster, ed.), pp. 149–186, Elsevier, Amsterdam.

    Google Scholar 

  • Katz, L., and Englesberg, E., 1971, Hyperinducibility as a result of mutation in structural genes and self-catabolite repression in the ara operon, J. Bacteriol. 107: 34–52.

    PubMed  CAS  Google Scholar 

  • Kellerman, O., and Szmelcman, S., 1974, Involvement of a “periplasmic” binding protein in active transport of maltose by Escherichia coli K12, Eur. J. Biochem. 47: 139–149.

    Google Scholar 

  • Kennedy, E. P., 1970, The lactose permease system of Escherichia coli, In: The Lactose Operon ( J. R. Beckwith and D. Zipser, eds.), pp. 49–92, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Klein, W. L., and Boyer, P. D., 1972, Energisation of active transport by Escherichia coli, J. Biol. Chem. 247: 7257–7265.

    PubMed  CAS  Google Scholar 

  • Kolodrubetz, D., and Schleif, R., 198la, L-Arabinose transport systems in Escherichia coli K-12, J. Bacteriol. 148: 472–479.

    CAS  Google Scholar 

  • Kolodrubetz, D., and Schleif, R., 198lb, Regulation of the L-arabinose transport operons in Escherichia coli, J. Mol. Biol. 151: 215–227.

    Google Scholar 

  • König, B., and Sandermann, H., 1982, 3-D-Galactoside transport in Escherichia coli, Mr determination of the transport protein in organic solvent, FEBS Lett. 147: 31–34.

    PubMed  Google Scholar 

  • Konings, W. N., and Boonstra, J., 1977, Anaerobic electron transfer and active transport in bacteria, Curr. Top. Membr. Transp. 9: 177–231.

    CAS  Google Scholar 

  • Koshland, D. E., 1977, Bacterial chemotaxis and some enzymes in energy metabolism, Symp. Soc. Gen. Microbiol. 27: 317–331.

    CAS  Google Scholar 

  • Kosiba, B. E., and Schleif, R., 1982, Arabinose-inducible promoter from Escherichia coli, J. Mol. Biol. 156: 53–56.

    PubMed  CAS  Google Scholar 

  • Kyte, J., and Doolittle, R. F., 1982, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157: 105–132.

    PubMed  CAS  Google Scholar 

  • Lam, V. M. S., Daruwalla, K. R., Henderson, P. J. F., and Jones-Mortimer, M. C., 1980, Proton-linked D-xylose transport in Escherichia coli, J. Bacteriol. 143: 396–402.

    PubMed  CAS  Google Scholar 

  • Lancaster, J. R., 1982, Mechanism of lactose-proton cotransport in Escherichia coli, FEBS Lett. 150: 9–18.

    PubMed  CAS  Google Scholar 

  • Lancaster, J. R., and Hinkle, P. C., 1977, Studies of the ß-galactoside transporter in inverted membrane vesicles of Escherichia coli, J. Biol. Chem. 252: 7657–7661.

    PubMed  CAS  Google Scholar 

  • Landick, R., and Oxender, D. L., 1982, Bacterial periplasmic binding proteins, In: Membranes and Transport (A. N. Martonosi, ed.), Vol. 2, pp. 81–88, Plenum Press, New York.

    Google Scholar 

  • Larsen, S. H., Adler, J., Gargus, J. J., and Hogg, R. W., 1974, Chemomechanical coupling without ATP: The source of energy for motility and chemotaxis in bacteria, Proc. Natl. Acad. Sci. USA 71: 1239–1243.

    PubMed  CAS  Google Scholar 

  • Lawlis, V. B., Dennis, M. S., Chen, E. Y., Smith, D. H., and Henner, D. J., 1984, DNA sequence of the xylA and xylB genes of Escherichia coli, Appl. Environ. Microbiol. 47: 15–21.

    PubMed  CAS  Google Scholar 

  • Lengeler, J., Hermann, K. O., Unsöld, H. J., and Boos, W., 1971, The regulation of the 3methylgalactoside transport system and of the galactose binding protein of Escherichia coli K-12, Eur. J. Biochem. 19: 457–470.

    PubMed  CAS  Google Scholar 

  • Lever, J. E., 1972, Quantitative assay of the binding of small molecules to protein: Comparison of dialysis and membrane filter assays, Anal. Biochem. 50: 73–83.

    PubMed  CAS  Google Scholar 

  • Lombardi, F. J., 1981, Lactose-H ± (OH−) transport system of Escherichia coli, Biochim. Biophys. Acta 649: 661–679.

    PubMed  CAS  Google Scholar 

  • Lombardi, F. J., and Kaback, H. R., 1972, The transport of amino acids by membranes prepared from Escherichia coli, J. Biol. Chem. 247: 7844–7857.

    PubMed  CAS  Google Scholar 

  • Lopilato, J. E., Tsuchiya, T., and Wilson, T. H., 1978, Role of Na+ and Li+ in thiomethylgalactoside transport by the melibiose transport system of Escherichia coli, J. Bacteriol. 134: 147–156.

    PubMed  CAS  Google Scholar 

  • Lopilato, J. E., Garwin, J. L., Emr, S. D., Silhavy, T. J., and Beckwith, J. R., 1984, n-Ribose metabolism in Escherichia coli K-12; Genetics, regulation, and transport, J. Bacteriol. 158: 665–673.

    PubMed  CAS  Google Scholar 

  • Macpherson, A. J. S., Jones-Mortimer, M. C., and Henderson, P. J. F., 1981, Identification of the AraE transport protein of Escherichia coli, Biochem. J. 196: 269–283.

    PubMed  CAS  Google Scholar 

  • Macpherson, A. J. S., Jones-Mortimer, M. C., Horne, P., and Henderson, P. J. F., 1983, Identification of the GaIP galactose transport protein of Escherichia coli, J. Biol. Chem. 258: 4390–4396.

    PubMed  CAS  Google Scholar 

  • Mahoney, W. C., Hogg, R. W., and Hermodson, M. A., 1981, The amino acid sequence of the 1)-galactose-binding protein from E. coli B/r, J. Biol. Chem. 256: 4350–4356.

    PubMed  CAS  Google Scholar 

  • Maniatis, T., Fritsch, E. F., and Sambrook, J., 1982, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Markgraf, M., Bocklage, H., and Müller-Hill, B., 1985, A change of threonine 266 to isoleucine in the lac permease of Escherichia coli diminishes the transport of lactose and increases the transport of maltose, Mol. Gen. Genet. 198: 473–475.

    PubMed  CAS  Google Scholar 

  • Mitaku, S., Wright, J. K., Best, L., and Jähnig, F., 1984, Localization of the galactoside binding site in the lactose carrier of Escherichia coli, Biochim. Biophys. Acta 776: 247–258.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1961, Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism, Nature 191: 144–148.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1963, Moleculé, group and electron translocation through natural membranes, Biochem. Soc. Symp. 22: 142–169.

    Google Scholar 

  • Mitchell, P., 1966, Chemiosmotic coupling in oxidative and photosynthetic phosphorylation, Biol. Rev. 41: 445–502.

    PubMed  CAS  Google Scholar 

  • Mitchell, P., 1973, Performance and conservation of osmotic work by proton-coupled solute porter systems, Bioenergetics 4: 63–91.

    CAS  Google Scholar 

  • Mitchell, P., 1976, Vectorial chemistry and the molecular mechanics of chemiosmotic coupling: Power transmission by proticity, Biochem. Soc. Trans. 4: 399–430.

    PubMed  CAS  Google Scholar 

  • Mogi, T., and Anraku, Y., 1984, Mechanism of proline transport in Escherichia coli K12, J. Biol. Chem. 259: 7791–7796.

    PubMed  CAS  Google Scholar 

  • Müller, N., Heine, H.-G., and Boos, W., 1982, Cloning of mglB, the structural gene for the galactose-binding protein of Salmonella typhimurium and Escherichia coli, Mol. Gen. Genet. 185: 473–480.

    PubMed  Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1965, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3685–3692.

    PubMed  CAS  Google Scholar 

  • Newman, M. J., and Wilson, T. H., 1980, Solubilization and reconstitution of the lactose transport system from Escherichia coli, J. Biol. Chem. 255: 10583–10586.

    PubMed  CAS  Google Scholar 

  • Newman, M. J., Foster, D. L., Wilson, T. H., and Kaback, H. R., 1981, Purification and Reconstitution of functional lactose carrier from Escherichia coli, J. Biol. Chem. 256: 11804–11808.

    PubMed  CAS  Google Scholar 

  • Niiya, S., Yamasaki, K., Wilson, T. H., and Tsuchiya, T., 1982, Altered cation coupling to melibiose transport in mutants of Escherichia coli, J. Biol. Chem. 257: 8902–8906.

    PubMed  CAS  Google Scholar 

  • Novotny, C. P., and Englesberg, E., 1966, The L-arabinose permease system in Escherichia coli B/r, Biochim. Biophys. Acta 117: 217–230.

    PubMed  CAS  Google Scholar 

  • Ordal, G. W., and Adler, J., 1974, Isolation and complementation of mutants in galactose taxis and transport, J. Bacteriol. 117: 509–516.

    PubMed  CAS  Google Scholar 

  • Page, M. G. P., and West, I. C., 1981, The kinetics of the ß-galactoside-proton symport of Escherichia coli, Biochem. J. 196: 721–731.

    PubMed  CAS  Google Scholar 

  • Page, M. G. P., and West, I. C., 1982, Alternative-substrate inhibition and the kinetic mechanism of the 3-galactoside proton symport of Escherichia coli, Biochem. J. 204: 681–688.

    PubMed  CAS  Google Scholar 

  • Page, M. G. P., and West, I. C., 1984, The transient kinetics of uptake of galactosides into Escherichia coli, Biochem. J. 223: 723–731.

    PubMed  CAS  Google Scholar 

  • Parsons, R. G., and Hogg, R. W., 1974, Crystallisation and characterisation of the L-arabinosebinding protein of Escherichia coli B/r, J. Biol. Chem. 249: 3602–3607.

    PubMed  CAS  Google Scholar 

  • Patel, L., Garcia, M. L., and Kaback, H. R., 1982, Direct measurement of lactose/proton symport in Escherichia coli, Biochemistry 21: 5805–5810.

    PubMed  CAS  Google Scholar 

  • Pavlasova, E., and Harold, F. M., 1969, Energy coupling in the transport of 13-galactosides by Escherichia coli: Effect of proton conductors, J. Bacteriol. 98: 198–204.

    PubMed  CAS  Google Scholar 

  • Plate, C. A., 1979, Requirement for membrane potential in active transport of glutamine by Escherichia coli, J. Bacteriol. 137: 221–225.

    PubMed  CAS  Google Scholar 

  • Plate, C. A., Suit, J. L., Jetten, A. M., and Luria, S. E., 1974, Effects of colicin K on a mutant of Escherichia coli deficient in Ca2+ Mg2+ ATPase, J. Biol. Chem. 249: 6138–6143

    PubMed  CAS  Google Scholar 

  • Prestidge, L. S., and Pardee, A. B., 1965, A second permease for methylthio-β-D-galactoside in Escherichia coli, Biochim. Biophys. Acta 100: 591–593.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., and Pflugrath, J. W., 1980, The structure of D-galactoside-binding protein at 4.11 resolution looks like L-arabinose-binding protein, J. Biol. Chem. 255: 6559–6561.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., and Vyas, N. K., 1984, Novel stereospecificity of the L-arabinose-binding protein, Nature 310: 381–386.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Phillips, G. N., Parsons, R. G., and Hogg, R. W., 1974, Crystallographic data of an L-arabinose binding protein from Escherichia coli, J. Mol. Biol. 86: 491–493.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Gilliland, G. L., and Phillips, G. N., 1977, The 2.8. E resolution structure of the Larabinose binding protein from Escherichia coli, J. Biol. Chem. 252: 5142–5149.

    PubMed  CAS  Google Scholar 

  • Quiocho, F. A., Meador, W. E., and Pflugrath, J. W., 1979, Preliminary crystallographic data of receptors for transport and chemotaxis in Escherichia coli: D-Galactose and maltose-binding proteins, J. Mol. Biol. 133: 181–184.

    PubMed  CAS  Google Scholar 

  • Rahmanian, M., Claus, D. R., and Oxender, D. L., 1973, Multiplicity of leucine transport systems in Escherichia coli K12, J. Bacteriol. 116: 1258–1266.

    PubMed  CAS  Google Scholar 

  • Raibaud, O., and Schwartz, M., 1980, Restriction map of the Escherichia coli malA region and identification of the malT product, J. Bacteriol. 143: 761–771.

    PubMed  CAS  Google Scholar 

  • Raibaud, O., Roa, M., Braun-Breton, C., and Schwartz, M., 1980, Genetic map of the malK-lamB operon, Mol. Gen. Genet. 174: 241–248.

    Google Scholar 

  • Ramos, S., and Kaback, H. R., 1977a, The electrochemical proton gradient in Escherichia coli membrane vesicles, Biochemistry 16: 848–854.

    PubMed  CAS  Google Scholar 

  • Ramos, S., and Kaback, H. R., 1977b, The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles, Biochemistry 16: 854–859.

    PubMed  CAS  Google Scholar 

  • Ramos, S., Schuldiner, S., and Kaback, H. R., 1976, The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles, Proc. Natl. Acad. Sci. USA 73: 1892–1896.

    PubMed  CAS  Google Scholar 

  • Richarme, G., 1985, 5-Methoxyindole-2-carboxylic acid, a potent inhibitor of binding protein dependent transport in Escherichia coli, Biochim. Biophys. Acta 815:37–43.

    Google Scholar 

  • Rickenberg, H. W., Cohen, G. N., Buttin, G., and Monod, J., 1956, La galactoside-permease d’Escherichia coli, Ann. Int. Pasteur Paris 91: 829.

    CAS  Google Scholar 

  • Riordan, C., and Kornberg, H. L., 1977, Location of galP, a gene which specifies galactose permease activity, on the Escherichia coli linkage map, Proc. R. Soc. London Ser. B 198: 401–410.

    CAS  Google Scholar 

  • Robbins, A. R., 1975, Regulation of the Escherichia coli methylgalactoside transport system by gene mglD, J. Bacteriol. 123: 69–74.

    CAS  Google Scholar 

  • Robbins, A., and Rotman, B., 1975, Evidence for binding proteinndependent substrate translocation by the methylgalactoside transport system of Escherichia coli K12, Proc. Natl. Acad. Sci. USA 72: 423–427.

    PubMed  CAS  Google Scholar 

  • Robbins, A. R., Guzman, R., and Rotman, B., 1976, Roles of individual mg/ gene products in the 0-methyl-galactoside transport system of Escherichia coli K12, J. Biol. Chem. 251: 3112–3116.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P., 1973a, 0-galactoside transport and proton movements in an ATPase-deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 53:1289–1296.

    CAS  Google Scholar 

  • Rosen, B. P., 1973b, Restoration of active transport in an Mg2+ -ATPase-deficient mutant of Escherichia coli, J. Bacteriol. 116: 1124–1129.

    PubMed  CAS  Google Scholar 

  • Rosen, B. P. (ed.), 1978, Bacterial Transport, Marcel Dekker, New York.

    Google Scholar 

  • Rosen, B. P., and Kashket, E. R., 1978, Energetics of active transport, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 559–620, Marcel Dekker, New York.

    Google Scholar 

  • Rosen, B. P., and McLees, J. J., 1974, Active transport of calcium in inverted membrane vesicles of Escherichia coli, Proc. Natl. Acad. Sci. USA 71: 5042–5046.

    PubMed  CAS  Google Scholar 

  • Rosenberg, H., Gerdes, R. G., and Chegwidden, K., 1977, Two systems for the uptake of phosphate in Escherichia coli, J. Bacteriol. 131: 505–511.

    PubMed  CAS  Google Scholar 

  • Rosenfeld, S. A., Stevis, P. E., and Ho, N. W. Y., 1984, Cloning and characterisation of the xyl genes from Escherichia coli, Mol. Gen. Genet. 194: 410–415.

    PubMed  CAS  Google Scholar 

  • Rotman, B., 1959, Separate permeases for the accumulation of methyl-O-D-galactoside and methyl-13n-thiogalactoside in Escherichia coli, Biochim. Biophys. Acta 32: 599–601.

    PubMed  CAS  Google Scholar 

  • Rotman, B., and Guzman, R., 1982, Identification of the mglA gene product in the 0-methylgalactoside transport system of Escherichia coli using plasmid DNA deletions generated in vitro, J. Biol. Chem. 257: 9030–9034.

    CAS  Google Scholar 

  • Rotman, B., Ganesan, A. K., and Guzman, R., 1968, Transport systems for galactose and galactosides in Escherichia coli: Substrate and inducer specificities, J. Mol. Biol. 36: 247–260.

    PubMed  CAS  Google Scholar 

  • Sancar, A., Hack, A. M., and Rupp, W. D., 1979, Simple method for identification of plasmidcoded proteins, J. Bacteriol. 137: 692–993.

    PubMed  CAS  Google Scholar 

  • Sanger, F., Nicklen, S., and Coulson, A. R., 1977, DNA sequencing with chain-terminating inhibitors, Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, A. R., Barrell, B. G., Smith, A. J. H., and Roe, B. A., 1980, Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing, J. Mol. Biol. 143: 161–178.

    PubMed  CAS  Google Scholar 

  • Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F., and Petersen, G. B., 1982, Nucleotide sequence of bacteriophage X DNA, J. Mol. Biol. 162: 729–773.

    PubMed  CAS  Google Scholar 

  • Schaefler, S., 1967, Inducible system for the utilization of 0-glucosides in Escherichia coli. I. Active transport and utilization of 13-glucosides, J. Bacteriol. 93: 254–263.

    PubMed  CAS  Google Scholar 

  • Schaefler, S., and Maas, W. K., 1967, Inducible system for the utilization of 0-glucosides in Escherichia coli. II. Description of mutant types and genetic analysis, J. Bacteriol. 93: 264–272.

    PubMed  CAS  Google Scholar 

  • Schaffner, W., and Weissman, C., 1973, A rapid, sensitive and specific method for the determination of protein in dilute solution, Anal. Biochem. 56: 502–514.

    PubMed  CAS  Google Scholar 

  • Schairer, H. U., and Haddock, B. A., 1972, 0-Galactoside accumulation in a Mg2+/Ca2+ activated ATPase deficient mutant of Escherichia coli, Biochem. Biophys. Res. Commun. 48:544–551.

    PubMed  CAS  Google Scholar 

  • Schleif, R., 1969, An L-arabinose binding protein and arabinose permeation in Escherichia coli, J. Mol. Biol. 46: 185–196.

    PubMed  CAS  Google Scholar 

  • Schmitt, R., 1968, Analysis of melibiose mutants deficient in a-galactosidase and thiomethylgalactoside permease II in Escherichia coli K12, J. Bacteriol. 96: 462–471.

    PubMed  CAS  Google Scholar 

  • Schuldiner, S., and Kaback, H. R., 1975, Membrane potential and active transport in membrane vesicles from Escherichia coli, Biochemistry 14: 5451–5461.

    PubMed  CAS  Google Scholar 

  • Schwartz, M., Kellerman, O., Szmelcman, S., and Hazelbauer, C. L., 1976, Further studies on the binding of maltose to the maltose-binding protein of Escherichia coli, Eur. J. Biochem. 71: 167–170.

    PubMed  CAS  Google Scholar 

  • Shamanna, D. K., and Sanderson, K. E., 1979a, Uptake and catabolism of o-xylose in Salmonella typhimurium LT2, J. Bacteriol. 139: 64–70.

    PubMed  CAS  Google Scholar 

  • Shamanna, D. K., and Sanderson, K. E., 1979b, Genetics and regulation of D-xylose utilization of Salmonella typhimurium LT2, J. Bacteriol. 139: 71–79.

    PubMed  CAS  Google Scholar 

  • Shuman, H. A., and Silhavy, T. J., 1981, Identification of the malK gene product: A peripheral membrane component of the Escherichia coli maltose transport system, J. Biol. Chem. 256: 560–562.

    PubMed  CAS  Google Scholar 

  • Shuman, H. A., Silhavy, T. J., and Beckwith, J. R., 1980, Labeling of proteins with ß-galactosidase by gene fusion, J. Biol. Chem. 255: 168–174.

    PubMed  CAS  Google Scholar 

  • Silhavy, T. J., Ferenci, T., and Boos, W., 1978, Sugar transport systems in Escherichia coli, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 127–169, Dekker, New York.

    Google Scholar 

  • Silhavy, T. J., Benson, S. A., and Emr, S. D., 1983, Mechanisms of protein localization, Microbiol. Rev. 47: 313.

    PubMed  CAS  Google Scholar 

  • Silhavy, T. J., Berman, M. L., and Enquist, L. W., 1984, Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Silver, S., 1978, Transport of cations and anions, In: Bacterial Transport ( B. P. Rosen, ed.), pp. 221–324, Dekker, New York.

    Google Scholar 

  • Simoni, R. D., and Postma, P. W., 1975, The energetics of bacterial active transport, Annu. Rev. Biochem. 44: 523–554.

    PubMed  CAS  Google Scholar 

  • Sinnott, M. L., and Viratelle, O. M., 1973, The pH dependence of galactosylation and degalactosylation with 13-galactosidase, Biochem. J. 133: 81–87.

    PubMed  CAS  Google Scholar 

  • Stalmach, M. E., Grothe, S., and Wood, J. S., 1983, Two proline porters in Escherichia coil K12, J. Bacteriol. 156: 481–486.

    PubMed  CAS  Google Scholar 

  • Stern, M. J., Ames, G. F.-L., Smith, N. H., Robinson, E. C., and Higgins, C. F., 1984, Repetitive extragenic palindromic sequences: A major component of the bacterial genome, Cell 37: 1015–1026.

    PubMed  CAS  Google Scholar 

  • Stock, J., and Roseman, S., 1971, A sodium-dependent sugar cotransport system in bacteria, Biochem. Biophys. Res. Commun. 44: 132–138.

    PubMed  CAS  Google Scholar 

  • Stoner, C., and Schleif, R., 1983, The araE low affinity L-arabinose transport promoter, J. Mol. Biol. 171: 369–381.

    PubMed  CAS  Google Scholar 

  • Stroobant, P., and Kaback, H. R., 1975, Ubiquinone-mediated coupling of NADH dehydrogenase to active transport in membrane vesicles from Escherichia coli, Proc. Natl. Acad. Sci. USA 72: 3970–3974.

    PubMed  CAS  Google Scholar 

  • Tanaka, K., Niiya, S., and Tsuchiya, T., 1980, Melibiose transport in Escherichia coli, J. Bacteriol. 141: 1031–1036.

    PubMed  CAS  Google Scholar 

  • Teather, R. M., Hamelin, O., Schwarz, H., and Overath, P., 1977, Functional Symmetry of the 3galactoside carrier in Escherichia coli, Biochim. Biophys. Acta 467: 386–395.

    CAS  Google Scholar 

  • Teather, R. M., Müller-Hill, B., Abrutsch, U., Aichele, G., and Overath, P., 1978, Amplification of the lactose carrier protein in Escherichia coli using a plasmid vector, Mol. Gen. Genet. 159: 239–248.

    PubMed  CAS  Google Scholar 

  • Teather, R. M., Bramhall, J., Riede, I., Wright, J. K., Fürst, M., Aichele, G., Wilhelm, U., and Overath, P., 1980, Lactose carrier protein of Escherichia coli, Eur. J. Biochem. 108: 223–231.

    PubMed  CAS  Google Scholar 

  • Tokuda, H., and Kaback, H. R., 1977, Sodium-dependent methyl-1-thio-3-o-galactopyranoside transport in membrane vesicles isolated from Salmonella typhimurium, Biochemistry 16: 2130–2136.

    CAS  Google Scholar 

  • Trumble, W. R., Viitanen, P. V., Sarkar, H. K., Poonian, M. S., and Kaback, H. R., 1984, Site-directed mutagenesis of Cysi48 in the lac carrier protein of Escherichia coli, Biochem. Biophys. Res. Commun. 119: 860–867.

    PubMed  CAS  Google Scholar 

  • Tsuchiya, T., and Wilson, T. H., 1978, Cation-sugar cotransport in the melibiose transport system of Escherichia coli, Membr. Biochem. 2: 63–79.

    PubMed  CAS  Google Scholar 

  • Tsuchiya, T., Raven, J., and Wilson, T. H., 1977, Co-transport of Na+ and methyl-13-D-thiogalactopyranoside mediated by the melibiose transport system of Escherichia coli, Biochem. Biophys. Res. Commun. 76: 26–31.

    PubMed  CAS  Google Scholar 

  • Tsuchiya, T., Lopilato, J., and Wilson, T. H., 1978, Effect of lithium ion on melibiose transport in Escherichia coli, J. Membr. Biol. 42: 45–59.

    PubMed  CAS  Google Scholar 

  • Tsuchiya, T., Takeda, K., and Wilson, T. H., 1980, H+-substrate cotransport by the melibiose membrane carrier in Escherichia coli, Membr. Biochem. 3: 131–146.

    PubMed  CAS  Google Scholar 

  • Tsuchiya, T., Ottina, K., Moriyama, Y., Newman, M. J., and Wilson, T. H., 1982, Solubilization and reconstitution of the melibiose carrier from a plasmid-carrying strain of Escherichia coli, J. Biol. Chem. 257: 5125–5128.

    PubMed  CAS  Google Scholar 

  • Viitanen, P., Garcia, M. L., and Kaback, H. R., 1984, Purified reconstituted lac carrier protein from Escherichia coli is fully functional, Proc. Natl. Acad. Sci. USA 81: 1629–1633.

    PubMed  CAS  Google Scholar 

  • von Meyenburg, K., and Nikaido, H., 1977, Specificity of the transport process catalysed by the kreceptor protein, Biochem. Biophys. Res. Commun. 78: 1100–1107.

    Google Scholar 

  • von Wilcken-Bergmann, B., and Müller-Hill, B., 1982, Sequence of galR gene indicates a common evolutionary origin of lac and gal repressor in Escherichia coli, Proc. Natl. Acad. Sci. USA 79: 2427–2431.

    Google Scholar 

  • Vorisek, J., and Kepes, A., 1972, Galactose transport in Escherichia coli and the galactose-binding protein, Eur. J. Biochem. 28: 364–372.

    PubMed  CAS  Google Scholar 

  • Vyas, N. K., Vyas, M. N., and Quiocho, F. A., 1983, The 3A resolution structure of a o-galactosebinding protein for transport and chemotaxis in Escherichia coli, Proc. Natl. Acad. Sci. USA 80: 1792–1796.

    PubMed  CAS  Google Scholar 

  • Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., 1982, Distantly related sequences in the a-and I3-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold, EMBO J. 1: 945–951.

    Google Scholar 

  • Walker, J. E., Saraste, M., and Gay, N. J., 1984, Nucleotide sequence, regulation and structure of ATP-synthase, Biochim. Biophys. Acta 768: 164–200.

    PubMed  CAS  Google Scholar 

  • West, I. C., 1970, Lactose transport coupled to proton movements in Escherichia coli, Biochem. Biophys. Res. Commun. 41: 655–661.

    PubMed  CAS  Google Scholar 

  • West, I. C., 1980, Energy coupling in secondary active transport, Biochim. Biophys. Acta 604: 91–126.

    PubMed  CAS  Google Scholar 

  • West, I. C., 1983, The Biochemistry of Membrane Transport, Chapman & Hall, London.

    Google Scholar 

  • West, I. C., and Mitchell, P., 1972, Proton-coupled 13-galactoside translocation in non-metabolizing Escherichia coli, Bioenergetics 3: 445–462.

    CAS  Google Scholar 

  • West, I. C., and Mitchell, P., 1973, Stoichiometry of lactose-proton symport across the plasma membrane of Escherichia coli, Biochem. J. 132: 587–592.

    PubMed  CAS  Google Scholar 

  • West, I. C., and Mitchell, P., 1974, Proton/sodium ion antiport in Escherichia coli, Biochem. J. 144: 87–90.

    PubMed  CAS  Google Scholar 

  • West, I. C., and Page, M. G. P., 1984, When is the outer membrane of Escherichia coli rate-limiting for uptake of galactosides?, J. Theor. Biol. 110: 11–19.

    PubMed  CAS  Google Scholar 

  • Widdas, W. F., 1952, Inability of diffusion to account for placental glucose transfer in the sheep and consideration of the kinetics of a possible carrier transfer, J. Physiol. (London) 11: 23–39.

    Google Scholar 

  • Wiesmeyer, H., and Cohn, H., 1960, The characterisation of the pathway of maltose utilisation by Escherichia coli, Biochim. Biophys. Acta 39: 440–447.

    PubMed  CAS  Google Scholar 

  • Willis, R. C., and Furlong, C. E., 1974, Purification and properties of a ribose binding protein from Escherichia coli, J. Biol. Chem. 249: 6926–6929.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., 1974, The regulation and properties of the galactose transport system in Escherichia coli K12, J. Biol. Chem. 249: 553–558.

    PubMed  CAS  Google Scholar 

  • Wilson, D. B., 1976, Properties of the entry and exit reactions of the beta-methyl galactoside transport system in Escherichia coli, J. Bacteriol. 126: 1156–1165.

    PubMed  CAS  Google Scholar 

  • Winkler, H. H., and Wilson, T. H., 1966, The role of energy coupling in the transport of 3galactosides by Escherichia coli, J. Biol. Chem. 241: 2200–2211.

    PubMed  CAS  Google Scholar 

  • Winter, G., Fersht, A. R., Wilkinson, A. J., Zoller, M., and Smith, M., 1982, Redesigning enzyme structure by site-directed mutagenesis: Tyrosyl tRNA synthetase and ATP binding, Nature 299: 756–758.

    PubMed  CAS  Google Scholar 

  • Witholt, B., and Boekhout, M., 1978, The effect of osmotic shock on the accessibility of the murein layer of exponentially growing Escherichia coli to lysozyme, Biochim. Biophys. Acta 508: 296–305.

    PubMed  CAS  Google Scholar 

  • Witholt, B., Boekhout, M., Brock, M., Kingma, T., van Heerikhuizen, H., and de Leij, L., 1976, An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli, Anal. Biochem. 74: 160–170.

    PubMed  CAS  Google Scholar 

  • Wong, P. T. S., and Wilson, T. H., 1970, Counterflow of galactosides in Escherichia coli, Biochim. Biophys. Acta 196: 336–350.

    PubMed  CAS  Google Scholar 

  • Wright, J. K., Riede, I., and Overath, P., 1981, Lactose carrier protein of Escherichia coli: Interaction with galactosides and protons, Biochemistry 20: 6404–6415.

    PubMed  CAS  Google Scholar 

  • Wright, J. K., Teather, R. M., and Overath, P., 1983, Lactose permease of Escherichia coli, Methods Enzymol. 97: 158–175.

    PubMed  CAS  Google Scholar 

  • Wu, H. C. P., 1967, Role of the galactose transport system in the establishment of endogenous induction of the galactose operon in Escherichia coli, J. Mol. Biol. 24: 213–223.

    PubMed  CAS  Google Scholar 

  • Wu, H. C. P., Boos, W., and Kalckar, H. M., 1969, Role of the galactose transport system in the retention of intracellular galactose in Escherichia coli, J. Mol. Biol. 41: 109–120.

    PubMed  CAS  Google Scholar 

  • Yazyu, H., Shiota-Niiya, S., Shimamoto, T., Kanazawa, H., Futai, M., and Tsuchiya, T., 1984, Nucleotide sequence of the melB gene and characteristics of deduced amino acid sequence of the melibiose carrier in Escherichia coli, J. Biol. Chem. 259: 4320–4326.

    PubMed  CAS  Google Scholar 

  • Yazyu, H., Shiota, S., Futai, M., and Tsuchiya, T., 1985, Alteration in cation specificity of the melibiose transport carrier of Escherichia coli due to replacement of proline 122 with serine, J. Bacteriol. 162: 933–937.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Plenum Press, New York

About this chapter

Cite this chapter

Henderson, P.J.F. (1986). Active Transport of Sugars into Escherichia coli. In: Morgan, M.J. (eds) Carbohydrate Metabolism in Cultured Cells. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7679-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7679-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7681-1

  • Online ISBN: 978-1-4684-7679-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics