Skip to main content

Implications of Current Algebra for η Decay— A Summary

  • Chapter
Symposia on Theoretical Physics and Mathematics 9

Abstract

In calculations involving pions, the use of equal time commutation relations for the currents together with PCAC (Partial Conservation of Axial Vector Current) principle for the pion field operator has had some success over the last couple of years. Most spectacular among these is the calculation of Adler1 and Weissberger2 giving the weak axial vector renormalization g A in terms of the total crosssection in π-N scattering. Subsequently, the current algebra was found successful in relating various leptonic K-decay processes3 and in giving some details of nonleptonic decays.4 Hara and Nambu4 applied these techniques to successfully predict the energy spectrum of the unlike pion in the K → 3π decay. There is a lot of similarity between η and K → 3π decays, and it is natural to expect that similar mechanism explain both processes. However, the current algebra techniques that were so successful in K decays have not had a similar effect in η decays. We shall see that some of the difficulties will be traced to the ambiguity in the various extrapolations possible from the soft pion limit (where the current algebra makes definite predictions) to the physical pions. In this talk we shall review briefly the various approaches and then suggest an extrapolation procedure that we think best explains the π-decay process.

Presented at the Sixth Anniversary Symposium, The Institute of Mathematical Sciences, Adyar, Madras, India, January, 1968.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. L. Adler, Phys. Rev. Letters 14: 1051 (1965).

    Article  ADS  MATH  Google Scholar 

  2. W. I. Weissberger, Phys. Rev. Letters 14: 1047 (1965).

    Article  ADS  Google Scholar 

  3. C. G. Callan and S. B. Treiman, Phys. Rev. Letters 16: 153 (1966).

    Article  MathSciNet  ADS  Google Scholar 

  4. Y. Hara and Y. Nambu, Phys. Rev. Letters 16: 875 (1966); D.K. Elias and J. C. Taylors, Nuove Cimento 44 518(1966); S. K. Bose and S. N. Biswas Phys. Rev. Letters 16: 330 (1966): H. D. I. Aberbanel, Phys. Rev. 153: 154 (1967).

    Article  ADS  Google Scholar 

  5. R. Ramachandran, Nuovo Cimento 47A: 669 (1967); S. K. Bose and A. M. Zimerman, Ibid 43A: 1165 (1966); R. Graham, S. Pakvasa, and L. O’Rafea-ataigh, Ibid 48A: 830 (1967).

    ADS  Google Scholar 

  6. S. Weinberg, Phys. Rev. Letters 17: 616 (1966); N. N. Khuri, Phys. Rev. 153: 1477 (1967).

    Article  ADS  Google Scholar 

  7. Columbia Berkeley-Purdue-Wisconsin-Yale Collaborators, Phys. Rev. 149: 1044 (1966).

    Article  Google Scholar 

  8. D. G. Sutterland, Phys. Letters 23: 384 (1966).

    Article  ADS  Google Scholar 

  9. W. Bardeen, L. S. Brown, B. W. Lee and H. T. Nieh, Phys. Rev. Letters 18: 1170 (1967).

    Article  ADS  Google Scholar 

  10. J. A. Cronin, Phys. Rev. 161: 1483 (1967); (see also) S. Weinberg, Phys. Rev. Letters 18: 188 (1967); J. Schwinger, Phys. Letters 24B: 473 (1967); Phys. Rev. Letters 18: 923 (1967); 19: 1154 (1967); and 19: 1501 (1967).

    Article  ADS  Google Scholar 

  11. F. Crawford and L. R. Price, Phys. Rev. 167: 1339 (1968); also Aditya Kumar and R. Ramachadran, T.I.F.R. preprint (unpublished).

    Article  ADS  Google Scholar 

  12. S. Baltay et al., report on preliminary data at the International Theoretical Physics Conference on particles and Fields, Rochester, September, 1967, (unpublished) give a value of 1.55 ± 0.25; S. Buniatov et al., Phys. Letters 25B: 560 (1967) give R = 1.38 ± 0.15. C. Baglin et al., preprint (presented at the APS Spring meeting, Washington, 1967) report 1.3 ± 0.4.

    ADS  Google Scholar 

  13. W. A. Dunn and R. Ramachandran, Phys. Rev. 153: 1558 (1967) Similar result for τ and τ′ decays was first noted by N. Khuri and S. B. Treiman, Phys. Rev. 119:1115(1960).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alladi Ramakrishnan (Director of the Institute)

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Plenum Press

About this chapter

Cite this chapter

Ramachandran, R., Kumar, A. (1969). Implications of Current Algebra for η Decay— A Summary. In: Ramakrishnan, A. (eds) Symposia on Theoretical Physics and Mathematics 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7673-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7673-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7675-0

  • Online ISBN: 978-1-4684-7673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics