Skip to main content

Early Diagenesis of Organic Matter and the Nutritional Value of Sediment

  • Conference paper
Ecology of Marine Deposit Feeders

Part of the book series: Lecture Notes on Coastal and Estuarine Studies ((COASTAL,volume 31))

Abstract

The quantity, quality, and spatial distribution of particulate organic matter (POM) in the bioturbated zone of a sedimentary deposit are intimately related to the size and composition of the deposit-feeding community. Fresh allochthonous POM from the water column and autochthonous POM from epibenthic primary production are incorporated into the deposit by burial and through geophysical and biological mixing. Although the quality and quantity of organic materials produced at or settling onto the sediment surface determine benthic secondary production, subsurface particle transport determines how metabolizable POM is distributed within the deposit. Inasmuch as particle transport itself is often dominated by the mechanical activities of deposit-feeding macrofauna (Rhoads 1974; Aller 1982; Rice 1986), the biomass, species composition, and feeding depths of the deposit-feeding community and the standing crop and vertical distribution of metabolizable organic matter are fundamentally interdependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aller, R. C. 1980. Diagenetic processes near the sediment-water interface of Long Island Sound. I. Decomposition and nutrient element geochemistry (S,N,P). Adv. Geophys. 22: 237–350.

    Article  CAS  Google Scholar 

  • Aller, R. C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. In: McCall, P. L. and M. J. S. Tevesz (eds.), Animal-Sediment Relations, Plenum Press, New York. pp. 53–102.

    Google Scholar 

  • Anderson, F. E., L. Black, L. E. Watling, W. Mook, and L. M. Mayer. 1982. A temporal and spatial study of inudflat erosion and deposition. J. Sed. Pet. 51: 729–736.

    Google Scholar 

  • Barbaro, J. R. 1985. Early Diagenesis of Particulate Organic Matter in Bioadvective Sediments, Lowes Cove, Maine. Master of Arts Thesis, State University of New York, Binghamton. 78 pp.

    Google Scholar 

  • Bembia, P. J. 1985. Bioadvective Sediment Mixing and Beryllium-7 Diagenesis in Intertidal Sediments, Lowes Cove, Maine. Master of Arts Thesis, State University of New York, Binghamton. 61 pp.

    Google Scholar 

  • Berner, R. A. 1980. Early Diagenesis. Princeton Univ. Press, Princeton. 214 pp.

    Google Scholar 

  • Berner, R. A. 1982. Burial of organic carbon and pyritic sulfur in the modern ocean: its geochemical and environmental significance. Am. J. Sci. 282: 451–473.

    Article  CAS  Google Scholar 

  • Bianchi, T. S. and J. S. Levinton. 1984. The importance of microalgae, bacteria, and particulate organic matter in the somatic growth of Hydrobia totteni (Gastropoda). J. Mar. Res. 42: 431–443.

    Article  CAS  Google Scholar 

  • Boudreau, B. P. 1986. Mathematics of tracer mixing in sediments: II. Nonlocal mixing and the biological conveyor-belt phenomenon. Am. J. Sci. 286: 199–238.

    Article  Google Scholar 

  • Brown, B. 1982. Spatial and temporal distributions of a deposit-feeding polychaete on a heterogeneous tidal flat. J. Exp. Mar. Biol. Ecol. 65: 213–227.

    Article  Google Scholar 

  • Canunen, L. M. 1980. The significance of microbial carbon in the nutrition of the deposit-feeding polychaete Nereis succinea. Mar. Biol. 61: 9–20.

    Google Scholar 

  • Christian, R. R. and R. L. Wetzel. 1978. Interaction between substrate, microbes, and consumers of Spartina detritus in estuaries. In: M. L. Wiley (ed.), Estuarine Interactions. Academic Press, New York. pp. 93–114.

    Google Scholar 

  • Dobbs, F. C. and R. B. Whitlatch. 1982. Aspects of deposit-feeding by the polychaete Clymenella torquata. Ophelia 21: 159–166.

    Google Scholar 

  • Emerson, S. and J. Dymond. 1984. Benthic organic carbon cycling: Toward a balance of fluxes from particle settling and pore water gradients. In: Global Ocean Flux Study. National Academy Press, Washington, D. C. pp. 283–305.

    Google Scholar 

  • Emerson, S., K. Fischer, C. Reimers, and D. Heggie. 1984. Organic carbon dynamics and preservation in deep-sea sediments. Deep Sea. Res.

    Google Scholar 

  • Falk, K. In Preparation. Experimental studies of the feeding ecology of Leitoscoloplos sp. (Orbiniidae: Polychaeta) from Barnstable Harbor and Boston Harbor.

    Google Scholar 

  • Fenchel, T. and T. H. Blackburn. 1979. Bacteria and Mineral Cycling. Academic Press, New York. 225 pp.

    Google Scholar 

  • Frankenberg, D. and K. L. Smith. 1967. Coprophagy in marine animals. Limnol. Oceanogr. 12: 443–450.

    Article  Google Scholar 

  • Gerlach, S. A. 1971. On the importance of marine meiofauna for benthos communities. Oecologia 6: 176–190.

    Article  Google Scholar 

  • Hargrave, B. T. 1972. Prediction of egestion by the deposit-feeding amphi-pod Hyalella azteca. Oikos 23: 116–124.

    Article  Google Scholar 

  • Hobbie, J. E. and C. Lee. 1980. Microbial production of extracellular material: importance in benthic ecology. In: Tenore, K. R. and B. C. Coull (eds.), Marine Benthic Dynamics. Univ. of S. Carolina Press, Columbia. pp. 341–346.

    Google Scholar 

  • Hylleberg, J. 1975. Selective feeding by Abarenicola pacifica with selective notes on Abarenicola vagabunda and a concept of gardening in lugworms. Ophelia. 14: 113–137.

    Google Scholar 

  • Johnson, R. G. 1974. Particulate matter at the sediment-water interface in coastal environments. J. Mar. Res. 33: 313–330.

    Google Scholar 

  • Johnson, R. G. 1977. Vertical variation in particulate matter in the upper twenty centimeters of marine sediment. J. Mar. Res. 35: 273–282.

    CAS  Google Scholar 

  • Larson and D. C. Rhoads. 1983. The evolution of infaunal communities and sedimentary fabrics. In: M. J. S. Tevesz and P. L. McCall (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York. pp. 627–648.

    Google Scholar 

  • Levinton, J. S. 1972. Stability and trophic structure in deposit-feeding and suspension-feeding communities. Am. Nat. 106: 472–486.

    Article  Google Scholar 

  • Lopez, G. R. and M. A. Crenshaw. 1982. Radiolabelling of sedimentary organic matter with 14C-formaldehyde: preliminary evaluation of a new technique for use in deposit-feeding studies. Mar. Ecol. Prog. Ser. 8: 283–289.

    Article  Google Scholar 

  • Lopez, G. R., J. S. Levinton, and L. B. Slobodkin. 1977. The effect of grazing by the detritivore Orchestia grillus on Spartina litter and its associated microbial community. Oecologia (Berl.) 30: 111–127.

    Google Scholar 

  • Lopez, G. R. and J. S. Levinton. 1987. Ecology of deposit-feeding animals in marine sediments. Quart. Rev. Biol. 62: 235–260.

    Article  Google Scholar 

  • Mann, K. H. 1972. Macrophyte production and detritus food chains in coastal waters. Mein. Ist. Ital. Idrobiol. 29: 353–383.

    Google Scholar 

  • Mayer, L. M. (This Volume)

    Google Scholar 

  • Mayer, L. M., P. T. Rahaim, W. Guerin, S. A. Macko, L. Watling, and F. E. Anderson. 1985. Biological and granulometric controls on sedimentary organic matter of an intertidal mudflat. Estuar. Coastal. Shelf Sci. 20: 491–503.

    Article  CAS  Google Scholar 

  • Newell, R. C. 1965. The role of detritus in the nutrition of two marine deposit-feeders, the prosobranch Hydrobia ulvae and the bivalve Ma-coma balthica. Proc. Zool. Soc. Lond. 4: 25–45.

    Google Scholar 

  • Phillips, N. W. 1984. Role of different microbes and substrates as potential suppliers of specific, essential nutrients to marine detritivores. Bull. Mar. Sci. 35: 283–298.

    Google Scholar 

  • Rhoads, D. C. 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. 12: 263–300.

    CAS  Google Scholar 

  • Rhoads, D. C. and L. F. Boyer. 1982. The effects of marine benthos on physical properties of sediments: A successinal perspective. In: McCall, P. L. and M. J. S. Tevesz (eds.), Animal-Sediment Relations, Plenum Press, New York. pp. 3–43.

    Google Scholar 

  • Rhoads, D. C. and J. D. Germano. 1986. Interpreting long-term change in benthic communities: a new protocol. Hydrobiologia.

    Google Scholar 

  • Rhoads, D. C., P. L. McCall, and J. Y. Yingst. 1978. Disturbance and production on the estuarine sea floor. Amer. Sci. 66: 577–586.

    Google Scholar 

  • Rice, D. L. 1979. Trace element chemistry of aging marine detritus derived from coastal macrophytes. Ph.D. Dissertation, Georgia Institute of Technology, Atlanta. 144 pp.

    Google Scholar 

  • Rice, D. L. 1982. The detritus nitrogen problem: new observations and perspectives from organic geochemistry. Mar. Ecol. Prog. Ser. 9: 153–162.

    Article  CAS  Google Scholar 

  • Rice, D. L. 1986. Early diagenesis in bioadvective sediments: relationships between the diagenesis of beryllium-7, sediment reworking rates, and the abundance of conveyor-belt deposit-feeders. J. Mar. Res. 44: 149–184.

    Google Scholar 

  • Rice, D. L. and Hanson, R. B. 1984. A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation. Bull. Mar. Sci. 35: 326–340.

    Google Scholar 

  • Rice, D. L. and K. R.. Tenore. 1982. Dynamics of carbon and nitrogen during the decomposition of detritus derived from estuarine macrophytes. Estuar. Coastal Shelf Sci. 13: 681–690.

    Article  Google Scholar 

  • Rice, D. L. and S. I. Whitlow. 1985a. Early diagenesis of transition metals: a study of metal partitioning between macrofaunal populations and shallow sediments. In: The Fate and Effects of Pollutants. Maryland Seagrant Office, College Park. pp. 21–30.

    Google Scholar 

  • Rice, D. L. and S. I. Whitlow. 1985b. Diagenesis of transition metals in bioadvective marine sediments. In: Heavy Metals in the Environment, Vol. 2. C. E. C. Consultants, Ltd., Edinburgh. pp. 353–355.

    Google Scholar 

  • Rice, D. L., T. S. Bianchi, and E. H. Roper. 1986. Experimental studies of sediment reworking and growth of Scoloplos spp. (Orbiniidae: Polychaeta). Mar. Ecol. Prog. Ser. 30: 9–19.

    Google Scholar 

  • Rosenfeld, J. K. 1981. Nitrogen diagenesis in Long Island Sound sediments. Am. J. Sci. 281: 436–462.

    Article  CAS  Google Scholar 

  • Russell-Hunter, W. D. 1970. Aquatic Productivity. Macmillan Publ., New York. 306 pp.

    Google Scholar 

  • Sieburth, J. McN., and J. T. Conover. 1965. Sargassum tannin, an antibiotic that retards fouling. Nature 208: 52–53.

    Google Scholar 

  • Tenore, K. R. and E. J. Chesney. 1985. The effects of interaction of rate of food supply and population density on the bioenergetics of the opportunistic polychaete Capitella capitata (type 1). Limnol. Oceanogr. 30: 1188–1195.

    Article  Google Scholar 

  • Tenore, K. R. and D. L. Rice. 1980. A review of trophic factors affecting secondary production of deposit-feeders. In: Tenore, K. R. and B. C. Coull (eds.), Marine Benthic Dynamics. Univ. of S. Carolina Press, Columbia. pp. 325–340.

    Google Scholar 

  • Tenore, K. It., R. B. Hansen, B. E. Dornseif, and C. N. Wiederhold. 1979. The effect of organic nitrogen supplement on the utilization of different sources of detritus. Limnol. Oceanogr. 84: 350–355.

    Article  Google Scholar 

  • Tenore, K. R., L. Canunen, S. E. G. Findlay, and N. Phillips. 1982. Perspectives of research on detritus: Do factors controlling the availability of detritus to macroconsumers depend on its source? J. Mar. Res. 40: 473–490.

    CAS  Google Scholar 

  • Thayer, C. W. 1979. Biological bulldozing and the evolution of marine benthic communities. Science 203: 458–461.

    Article  PubMed  CAS  Google Scholar 

  • Valiela, I. 1984. Marine Ecological Processes. Springer-Verlag, New York. 546 pp.

    Google Scholar 

  • Yingst, J. Y. and D. C. Rhoads. 1980. The role of bioturbation in the enhancement of bacterial growth rates in marine sediments. In: Marine Benthic Dynamics, K. R. Tenore and B. C. Coull, eds. Univ. of South Carolina Press, Columbia. pp. 407–421.

    Google Scholar 

  • Zeitschel, B. 1980. Sediment-water interactions in nutrient dynamics. In: Marine Benthic Dynamics, K. R. Tenore and B. C. Coull, eds. Univ. of S. Carolina Press, Columbia. pp. 195–218.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Rice, D.L., Rhoads, D.C. (1989). Early Diagenesis of Organic Matter and the Nutritional Value of Sediment. In: Lopez, G., Taghon, G., Levinton, J. (eds) Ecology of Marine Deposit Feeders. Lecture Notes on Coastal and Estuarine Studies, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7671-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7671-2_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97001-1

  • Online ISBN: 978-1-4684-7671-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics