Skip to main content

Small-Scale Features of Marine Sediments and Their Importance to the Study of Deposit Feeding

  • Conference paper

Part of the book series: Lecture Notes on Coastal and Estuarine Studies ((COASTAL,volume 31))

Abstract

Studies on deposit feeders usually involve parallel samples of both the animal of interest and the sediment in which it is living. To most benthic ecologists, this means that a ’scoopful’ of sediment from the sample is removed to the laboratory for analysis of organic carbon and nitrogen, various measures of the mineral fraction, and other bulk properties. To the organism, features of the sediment such as total weight of ’organic carbon’ per gram dry weight of inorganic material are probably not perceivable. On the other hand, the quantity (number of mouthfuls?) of sediment needed in order to obtain sufficient amounts of digestible organic material is probably detected via metabolic feedback. If the processes governing the successful maintenance of deposit feeder populations are to be understood, bulk measures of sediment properties must be augmented by methods that will give information relatable to the scale of the organisms under study (see Cammen, this volume). This recommendation was made by Ralph Johnson in 1974, but it has scarcely been heeded. He urged benthic ecologists to devise measures of the food resource and its partitioning that were relevant to the requirements and activities of benthic animals. In order to do this, biological and chemical techniques must be developed that investigate the environment at the correct spatial scale.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Aller, J.Y. and R.C. Aller. 1986. Evidence for localized enhancement of biological activity associated with tube and burrow structures in deep-sea sediments at the HEBBLE site, western North Atlantic. Deep-Sea Res. 33: 755–790.

    Article  CAS  Google Scholar 

  • Aller, R.C. 1982. The effects of macrobenthos on chemical properties of marine sediment and overlying water. pp. 53–102, in P.L. McCall and M.J.S. Tevesz (eds.), Animal-Sediment Relations. Plenum Publishing Corp.

    Google Scholar 

  • Aller, R.C., J.Y. Yingst and W.J. Ullman. 1983. Comparative biogeochemistry of water in intertidal Onuphis (polychaeta) and Upogebia (Crustacea) burrows: temporal patterns and causes. J. Mar. Res. 41: 571–604.

    Article  CAS  Google Scholar 

  • Bonneau, M. and G. Levy. 1982. Assembly and physical organization of particles. pp. 268–287, in M. Bonneau and B. Souchier (eds.) Constituents and Properties of Soils. Academic Press.

    Google Scholar 

  • Bouma, A.H. 1969. Methods for the study of sedimentary structures. John Wiley and sons. New York.

    Google Scholar 

  • Burnett, B. 1979. Quantitative sampling of the microbiota of the deep-sea benthos. II. Evaluation of technique and introduction to the biota of the San Diego Trough. Trans. Amer. Micros. Soc. 98: 233–242.

    Article  Google Scholar 

  • Burnett, B. 1981. Quantitative sampling of nanobiota (microbiota) of the deep-sea benthos. III. The bathyal San Diego Trough. Deep-Sea Res. 28: 649–663.

    Google Scholar 

  • Burnham, C.P. 1970. The micromorphology of argillaceous sediments: particularly calcareous clays and siltstones. pp. 97–106, in D.A. Osmond and P. Bullock (eds.) Micromorphological techniques and applications. Agricultural Research Council of Great Britain, Soil Survey, Tech, Monogr. No. 2.

    Google Scholar 

  • Cannnen, L. 1982. Effect of particle size on organic content and microbial abundance within four marine sediments. Mar. Ecol. Prog. Ser. 9: 273–280.

    Article  Google Scholar 

  • DeFlaun, M.F. and L.M. Mayer. 1983. Relationships between bacteria and grain surfaces in intertidal sediments. Limnol. Oceanogr. 28: 873–881.

    Article  Google Scholar 

  • Duchaufour, H., L.J. Monrozier, and R. Pelet. 1984. Optical and geochemical studies of granulometric fractions from recent marine sediments. Org. Geochem. 6: 305–315.

    Article  CAS  Google Scholar 

  • Fedoroff, N. 1982. Soil fabric at the microscopic level. pp. 288–303, in M. Bonneau and B. Souchier (eds.) Constituents and Properties of Soils. Academic Press, New York.

    Google Scholar 

  • Fenchel, T. 1970. Studies on the decomposition of organic detritus derived from the turtle grass Thalassia testudinum. Limnol. Oceanogr. 15: 14–20.

    Google Scholar 

  • Foster, R.C. 1981. Polysaccharides in soil fabrics. Science 214: 665–667.

    Article  PubMed  CAS  Google Scholar 

  • Frankel L. and D.J. Mead. 1973. Mucilagenous matrix of some estuarine sands in Connecticut. J. Sed. Pet. 43: 1090–1095.

    Google Scholar 

  • Frankenberg, D. and K.L. Smith. 1967. Coprophagy in marine animals. Linmol. Oceanogr. 12: 443–450.

    Article  Google Scholar 

  • Gelder, S.R. 1983. Enhancement of histochemically demonstrated organic materials on sand-silt grains using polarized light. Tech. Inf. Bull., Leitz, USA 1: 11–12.

    Google Scholar 

  • Gelder, S.R. 1984. Diet and histophysiology of the alimentary canal of Lumbricillus lineatus (Oligochaeta, Enchytraeidae). Hydrobiologia 115: 7181

    Article  Google Scholar 

  • Hargrave, B.T. 1975. The importance of total and mixed-layer depth in the supply of organic material to bottom communities. Symp. Biol. Hung. 15: 157–165.

    Google Scholar 

  • Hargrave, B.T. 1976. The central role of invertebrate faeces in sediment decomposition. pp. 301–321, in J.M. Anderson and A. Macfadyen (eds.) The role of terrestrial and aquatic organisms in decomposition processes. Blackwell Scientific Publ., Oxford.

    Google Scholar 

  • Harrison, W. and M.L. Wass. 1965. Frequencies of infaunal invertebrates related to water content of Chesapeake Bay sediments. Southeastern Geol. 6: 177–187.

    Google Scholar 

  • Hughes, T.G. 1979. Studies on the sediment of St. Margaret’s Bay, Nova Scotia. J. Fish. Res. Bd. Canada 36: 529–536.

    Google Scholar 

  • Johannes, R.E. and M. Satomi. 1966. Composition and nutritive value of fecal pellets of a marine crustacean. Limnol. Oceanogr. 11: 191–197.

    Article  CAS  Google Scholar 

  • Johnson, R.G. 1974. Particulate matter at the sediment-water interface in coastal environments. J. mar. Res. 32: 313–330.

    Google Scholar 

  • Johnson, R.G. 1977. Vertical variation in particulate matter in the upper twenty centimeters of marine sediments. J. mar. Res. 35: 273–282.

    CAS  Google Scholar 

  • Josselyn, M.N. and A.C. Mathieson. 1980. Seasonal influx and decomposi-tien of autochthonous macrophyte litter in a north temperate estuary. Hydrobiologia 71: 197–208.

    CAS  Google Scholar 

  • Josselyn, M.N., G.M. Cailliet, T.M. Niesen, R. Cowen, A.C. Hurley, J. Connor and S. Hawes. 1983. Composition, export and faunal utilization of drift vegetation in the Salt River submarine canyon. Est. Coast. Shelf Sci. 17: 447–465.

    Article  Google Scholar 

  • Juinars, P.A. and A.R.M. Nowell. 1984. Effects of benthos sediment transport: difficulties with functional grouping. Continent. Shelf Res. 3: 115–130.

    Article  Google Scholar 

  • Klauser, M.D. 1986. Mucous secretions of the acoel turbellarian Con voluta sp. Orsted: an ecological and functional approach. J. exp. mar. Biol. Ecol. 97: 123–133.

    Article  Google Scholar 

  • Klok, J., J.M.M. van der Knapp, J.W. DeLeeuw, H.C. Cox, and P.A. Schenck. 1983. Qualitative and quantitative characterization of the total organic matter in a recent marine sediment. pp. 813–818, In M. Bjoray et al. (eds.), Advances in Org. Geochem., John Wiley, New York.

    Google Scholar 

  • Klok, J., M. Baas, H.C. Cox, J.W. DeLeeuw, W.I.C. Rijpstra, and P.A. Schenck. 1984. Qualitative and quantitative characterization of the total organic matter in a recent marine sediment (Part II). Org. Geochem. 6: 265–278.

    Article  CAS  Google Scholar 

  • Kraueter, J. and D.S. Haven. 1970. Fecal pellets of common invertebrates of lower York River and lower Chesapeake Bay, Virginia. Chesapeake Sci. 11: 159–173.

    Article  Google Scholar 

  • Lawry, J.V. 1967. Structure and function of the parapodial cirri of the polynoid polychaete Harmothoe. Z. Zellforsch. mikrosc. Anat. 82: 345–361.

    Article  Google Scholar 

  • Levinton, J.S. 1979. Deposit-feeders, their resources, and the study of resource limitation. pp. 117–141, in R.J. Livingston (ed.) Ecological Processes in Coastal and Marine Systems. Plenum Press, New York.

    Chapter  Google Scholar 

  • Mayer, L.M. 1985. Geochemistry of humic substances in estuarine environments. pp. 211–232, in G.R. Aiken, D.M. McKnight, R.L. Wershaw and P. MacCarthy (eds.) Humic substances in soil, sediment, and water: geochemistry, isolation, and characterization. John Wiley and Sons, N.Y.

    Google Scholar 

  • Mayer, L.M., L.L. Schick and F.W. Setchell. 1986. Measurement of protein in nearshore marine sediments. Mar. Ecol. Prog. Ser. 30: 159–165.

    Article  CAS  Google Scholar 

  • Newell, R.C. 1965. The role of detritus in the nutrition of two marine deposit feeders, the prosobranch Hydrobia ulvae and the bivalve Macoma balthica. Proc. Zool. Soc. London 144: 25–45.

    Article  Google Scholar 

  • Nickels, J.S., R.J. Bobbie, R.F. Martz, G.A. Smith, D.C. White and N.L. Richards. 1981. Effect of silicate grain shape, structure, and location on the biomass and community structure of colonizing marine micro-biota. Appl. Environ. Microbiol. 41: 1262–1268.

    PubMed  CAS  Google Scholar 

  • O.R.S.T.O.M. -D.G.R.S.T. 1981. Glossaire de Pedologie.

    Google Scholar 

  • Rhoads, D.C. 1974. Organism-sediment relations on the muddy sea floor. Oceanogr. Mar. Biol. Ann. Rev. 12: 263–300.

    CAS  Google Scholar 

  • Rhoads, D.C. and D.K. Young. 1971. Animal-sediment relations in Cape Cod Bay, Massachusetts. II. Reworking by Molpadia oolitica (Holothuroidea). Mar. Biol. 11: 255–261.

    Google Scholar 

  • Rhoads, D.C. and L.F. Boyer. 1982. The effects of marine benthos on physical properties of sediments, a successional perspective. pp. 3–52, in P.L. McCall and M.J.S. Tevesz (eds.) Animal-Sediment Relations. Plenum Publ. Corp.

    Google Scholar 

  • Riemann, F. and M. Schrage. 1978. The mucus-trap hypothesis on feeding of aquatic nematodes and implications for biodegradation and sediment texture. Oecologia 34: 75–88.

    Article  Google Scholar 

  • Schafer, W. 1972. Ecology and paleoecology of marine environments (I. Oertel and G.Y. Craig, translators ). University of Chicago Press.

    Google Scholar 

  • Snider, L.J., B.R. Burnett and R.R. Hessler. 1984. The composition and distribution of meiofauna and nanobiota in a central North Pacific deep-sea area. Deep-Sea Res. 31: 1225–1249.

    Article  Google Scholar 

  • Stockton, W.L. and T.D. DeLaca. 1982. Food falls in the deep sea: occurrence, quality, and significance. Deep-Sea. Res. 29: 157–169.

    Article  Google Scholar 

  • Thiel, H. 1983. Meiobenthos and nanobenthos of the deep sea, pp. 167–230, in G.T. Rowe (ed.) Deep-Sea Biology. Vol. 8: The Sea: Ideas and Observations on Progress in the Study of the Seas. John Wiley and Sons, New Yprk.

    Google Scholar 

  • Trueman, E.R. 1975. The locomotion of soft-bodied animals. Edward Arnold, London.

    Google Scholar 

  • Webb, J.E. 1969. Biologically significant properties of submerged marine sands. Proc. Roy. Soc. Lond. B. 174: 355–402.

    Article  Google Scholar 

  • Webster, T.J.M., M.A. Paranjape, and K.H. Mann. 1975. Sedimentation of organic matter in St. Margaret’s Bay, Nova Scotia. J. Fish. Res. Board Can. 32: 1399–1407.

    Article  CAS  Google Scholar 

  • Weise, W. and G. Rheimheimer. 1978. Scanning electron microscopy and epifluorescence investigation of bacterial colonization of marine sand sediments. Microbial Ecol. 4: 175–188.

    Article  Google Scholar 

  • Whitlatch, R.B. 1974. Food-resource partitioning in the deposit feeding polychaete Pectinaria gouldii. Biol. Bull. 147: 227–235.

    Article  Google Scholar 

  • Whitlatch, R.B. 1981. Animal-sediment relationships in intertidal marine benthic habitats: Some determinants of deposit-feeding species diversity. J. Exp. Mar. Biol. Ecol. 53: 31–45.

    Article  Google Scholar 

  • Whitlatch, R.B. and R.G. Johnson. 1974. Methods for staining organic matter in marine sediments. J. Sed. Pet. 44: 1310–1312.

    CAS  Google Scholar 

  • Wiebe, P.H., S.H. Boyd and C. Winget. 1976. Particulate matter sinking to the deep-sea floor at 2000 m in the Tongue of the Ocean, Bahamas, with a description of a new sedimentation trap. J. mar. Res. 34: 341–354.

    Google Scholar 

  • Wolff, T. 1976. Utilization of seagrass in the deep sea. Aquatic Bot. 2: 161–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Watling, L. (1989). Small-Scale Features of Marine Sediments and Their Importance to the Study of Deposit Feeding. In: Lopez, G., Taghon, G., Levinton, J. (eds) Ecology of Marine Deposit Feeders. Lecture Notes on Coastal and Estuarine Studies, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7671-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7671-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97001-1

  • Online ISBN: 978-1-4684-7671-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics