Skip to main content

Modeling Deposit Feeding

  • Conference paper
Ecology of Marine Deposit Feeders

Part of the book series: Lecture Notes on Coastal and Estuarine Studies ((COASTAL,volume 31))

Abstract

Models are simplifications of reality. An important goal of modeling is to determine how sensitive the results of the model are to variations in the input terms. Models of the feeding and behavior of deposit feeders are a recent addition to benthic ecology (e.g., Calow, 1975; Jumars et al., 1982; Levinton and Lopez, 1977; Taghon et al., 1978; Taghon, 1981). This chapter discusses models that fall under the general heading of optimal foraging theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Anderson, N.H. 1976. Carnivory by an aquatic detritivore, Clistoronia magnifica (Trichoptera: Linmephilidae). Ecology 57: 1081–1085.

    Google Scholar 

  • Anderson, N.H. and E. Grafius 1975. Utilization and processing of allochthonous material by stream Trichoptera. Verh. Int. Ver. Limnol. 19: 3083–3088.

    Google Scholar 

  • Barbosa, P. and J. Greenblatt 1979. Suitability, digestibility and assimilation of various host plants of the gypsy moth Lymantria dispar L. Oecologia 43: 111–119.

    Google Scholar 

  • Belovsky, G.E. 1986. Optimal foraging and community structure: implications for a guild of generalist grassland herbivores. Oecologia 70: 35–52.

    Google Scholar 

  • Bolton, P.J. and J. Phillipson 1976. Burrowing, feeding, egestion and energy budgets of Allolobophora. rosea (Savigny)(Lumbricidae). Oecologia 23: 225–245.

    Google Scholar 

  • Bongaarts, J. 1980. Does malnutrition affect fecundity? A summary of evidence. Science 208: 564–569.

    PubMed  CAS  Google Scholar 

  • Box, G.E.P. 1976. Science and statistics. J. Am. Stat. Assoc. 71: 791–799.

    Google Scholar 

  • Bubnova, N.P. 1972. The nutrition of the detritus-feeding mollusks Macoma balthica (L.) and Portlandia arctica. (Gray) and their influence on bottom sediments. Oceanology 12: 899–905.

    Google Scholar 

  • Cadee, G.C. 1976. Sediment reworking by Arenicola marina on tidal flats in the Dutch Wadden Sea. Neth. J. Sea. Res. 10: 440–460.

    Google Scholar 

  • Caine, E.A. 1975. Feeding and masticatory structures of six species of the crayfish genus Procambarus (Decapoda, Astacidae). Forma Functio 8: 49–66.

    Google Scholar 

  • Calow, P. 1975. The feeding strategies of two freshwater gastropods, Ancylus fluviatilis Mull and Planorbis contortus Linn., in terms of ingestion rates and absorption efficiencies. Oecologia 20: 33–49.

    Google Scholar 

  • Calow, P. 1977. Evolution, ecology, and energetics: a study in metabolic adaptation. Adv. Ecol. Res. 10: 1–62.

    Google Scholar 

  • Calow, P. 1982. Homeostasis and fitness. Am. Nat. 120: 416–419.

    Google Scholar 

  • Canunen, L.M. 1980. Ingestion rate: an empirical model for aquatic deposit feeders and detritivores. Oecologia. 44: 303–310.

    Google Scholar 

  • Cannon, W.B. 1929. Organization for physiological homeostasis. Physiol. Rev. 9: 399–431.

    Google Scholar 

  • Charnov, E.L. 1976. Optimal foraging: the marginal value theorem. Theor. Pop. Biol. 9: 129–136.

    CAS  Google Scholar 

  • Ching, C.V. 1977. Studies on the small grey mullet Liza malinoptera (Valenciennes). J. Fish. Biol. 11: 293–308.

    Google Scholar 

  • Clements, L.A.J. and S.E. Stancyk 1984. Particle selection by the burrowing brittlestar Micropholis gracillima (Stimpson)(Echinodermata: Ophiuroidea). J. Exp. Mar. Biol. Ecol. 84: 1–13.

    Google Scholar 

  • Connor, M.S., J.M. Teal and I. Valiela 1982. The effect of feeding by mud snails, Ilyanassa. obsoleta (Say), on the structure and metabolism of a laboratory benthic algal community. J. Exp. Mar. Biol. Ecol. 65: 29–45.

    CAS  Google Scholar 

  • Cowie, R.J. and J.R. Krebs 1979. Optimal foraging in patchy environments. In R.M. Anderson, B.D. Turner, and L.R. Taylor (eds), Population dynamics. Blackwell, Oxford, pp. 183–205.

    Google Scholar 

  • Cummins, K.W., R.C. Peterson, F.O. Howard, J.C. Wuycheck and V.I. Holt 1973. The utilization of leaf litter by stream detritivores. Ecology 54: 336–345.

    Google Scholar 

  • Dadd, R.H. 1960. Observations on the palatability and the utilisation of food by locusts, with particular reference to the interpretation of performances in growth trials using synthetic diets. Entomo]. Exp. Appl. 3: 283–304.

    Google Scholar 

  • Dalton, D.C. 1963. Effects of dilution of the diet with an indigestible filler on feed intake in the mouse. Nature 197: 909–910.

    PubMed  CAS  Google Scholar 

  • Dalton, D.C. 1965. Dilution of the diet and feed intake in the mouse. Nature 205: 807.

    Google Scholar 

  • Dauer, D.M. 1985. Functional morphology and feeding behavior of Paraprionospio pinnata (Polychaeta: Spionidae). Mar. Biol. 85: 143–151.

    Google Scholar 

  • Davis, R.B. 1974. Stratigraphic effects of tubificids in profundal lake sediments. Limnol. Oceanogr. 19: 466–488.

    Google Scholar 

  • DeSilva, S.S. and M.J.S. Wijeyaratine 1977. Studies on the biology of young grey mullet, Mugil cephalus L. II. Food and feeding. Aquaculture 12: 157–167.

    Google Scholar 

  • Dobbs, F.C. and T.A. Scholly 1986. Sediment processing and selective feeding by Pectinaria koreni (Polychaeta: Pectinariidae). Mar. Ecol. Prog. Ser. 29: 165–176.

    Google Scholar 

  • Doucet, P.G. and N.M. vanStraalen 1980. Analysis of hunger from feeding rate observations. Anim. Behay. 28: 913–921.

    Google Scholar 

  • Eckman, J.E. 1985. Flow disruption by an animal-tube mimic affects sediment bacterial colonization. J. Mar. Res. 43: 419–435.

    Google Scholar 

  • Eckman, J.E. and A.R.M. Nowell 1984. Boundary skin friction and sediment transport about an animal-tube mimic. Sedimentology 31: 851–862.

    Google Scholar 

  • Ellers, O. and M. Telford 1984. Collection of food by oral surface podia in the sand dollar, Echinarachnius parma (Lamarck). Biol. Bull. 166: 574–582.

    Google Scholar 

  • Falk, K. 1986. Experimental studies of the feeding ecology of Scoloplos spp. (Orbiniidae: Polychaete) from Barnstable Harbor and Boston Harbor. Biol. Bull. 117: 479–480.

    Google Scholar 

  • Fenchel, T., L.H. Kofoed and A. Lappalainen 1975. Particle size-selection of two deposit feeders: the amphipod Corophium volutator and the prosobranch Hydrobia. ulvae. Mar. Biol. 30: 119–128.

    Google Scholar 

  • Forbes, V.E. and G.R. Lopez 1986. Changes in feeding and crawling rates of Hydrobia truncata (Prosobranchia: Hydrobiidae) in response to sedimentary chlorophyll-a and recently egested sediment. Mar. Ecol. Prog. Ser. 33: 287–294.

    Google Scholar 

  • Frankenberg, D. and K.L. Smith 1967. Coprophagy in marine animals. Limnol. Oceanogr. 12: 443–450.

    Google Scholar 

  • Gelperin, A. 1971. Regulation of feeding. Ann. Rev. Entomol. 16: 365–378.

    Google Scholar 

  • George, J.D. 1964. Organic matter available to the polychaete Cirriforniia tentaculata (Montagu) living in an intertidal mudflat. Limnol. Oceanogr. 9: 453–455.

    Google Scholar 

  • Ghiold, J. 1979. Spine morphology and its significance in feeding and burrowing in the sand dollar Mellita. quinquiesperforata (Echinodermata: Echinoidea). Bull. Mar. Sci. 29: 481–490.

    Google Scholar 

  • Goodbody, I. 1960. The feeding mechanism in the sand dollar Mellita sexiesperforata. (Leske). Biol. Bull. 119: 80–86.

    Google Scholar 

  • Gordon, D.C. 1966. The effects of the deposit feeding polychaete Pectinaria gouldii on the intertidal sediments at Barnstable Harbor. Limnol. Oceanogr. 11: 327–332.

    Google Scholar 

  • Grafius, E. and N.H. Anderson 1979. Population dynamics, bioenergetics, and role of Lepidostoma. quercina. Ross (Trichoptera: Lepidostomatidae) in an Oregon woodland stream. Ecology 60: 433–441.

    Google Scholar 

  • Guidi, L.D. 1986. The feeding response of the epibenthic amphipod Siphonoecetes dellavallei Stebbing to varying food particle sizes and concentrations. J. Exp. Mar. Biol. Ecol. 98: 51–63.

    Google Scholar 

  • Hainsworth, F.R., M.F. Tardiff and L.L. Wolf 1981. Proportional control for daily energy regulation in hummingbirds. Physiol. Zool. 54: 452–462.

    Google Scholar 

  • Hammond, L.S. 1982. Analysis of grain-size selection by deposit-feeding holothurians and echinoids (Echinodermata) from a shallow reef lagoon, Discovery Bay, Jamaica. Mar. Ecol. Prog. Ser. 8: 25–36.

    Google Scholar 

  • Hargrave, B.T. 1970. The utilization of benthic microflora by Hyalella azteca. J. Anim. Ecol. 39: 427–437.

    Google Scholar 

  • Hart, D.D. and S.C. Latta 1986. Determinants of ingestion rates in filter-feeding larval blackflies (Diptera: Simuliidae). Freshwat. Biol. 16: 1–14.

    Google Scholar 

  • Hart, T.J. 1930. Preliminary notes on the bionomics of the amphipod, Corophium volutator Pallas. J. Mar. Biol. Assoc. U.K. 16: 761–789.

    Google Scholar 

  • Hauksson, E. 1979. Feeding biology of Stichopus tremulus, a deposit-feeding holothurian. Sarsia 64: 155–160.

    Google Scholar 

  • Hickman, C.S. 1981. Selective deposit feeding by the deep-sea archaeogastropod Bathybembix aeola. Mar. Ecol. Prog. Ser. 6: 339–342.

    Google Scholar 

  • Hobson, K.D. 1967. The feeding and ecology of two north Pacific Abarenicola species (Arenicolidae, Polychaeta). Biol. Bull. 133: 343–354.

    Google Scholar 

  • Hofer, R. 1982. Protein digestion and proteolytic activity in the digestive tract of an omnivorous cyprinid. Conip. Biochem. Physiol. 72A: 55–63.

    CAS  Google Scholar 

  • Hofer, R., H. Forstner and R. Rettenwander 1982. Duration of gut passage and its dependence on temperature and food consumption in roach, Rutilus: laboratory and field experiments. J. Fish. Biol. 20: 289–299.

    Google Scholar 

  • Hughes, R.N. 1979. Optimal diets under the energy maximization premise: the effects of recognition time and learning. Am. Nat. 113: 209–221.

    Google Scholar 

  • Hughes, R.N. 1980. Optimal foraging theory in the marine context. Oceanogr. Mar. Biol. Ann. Rev. 18: 423–481.

    Google Scholar 

  • Hughes, T.G. 1973. Deposit feeding in Abra tenais (Bivalvia: Tellinacea). J. Zool. 171: 499–512.

    Google Scholar 

  • Hughes, T.G. 1975. The sorting of food particles by Abra. sp. (Bivalvia: Tellinacea). J. Exp. Mar. Biol. Ecol. 20: 137–156.

    Google Scholar 

  • Hughes, T.G. 1979. Mode of life and feeding in maldanid polychaetes from St. Margaret’s Bay, Nova Scotia. J. Fish. Res. Board Can. 36: 1503–1507.

    Google Scholar 

  • Hylleberg, J. 1975. Selective feeding by Abarenicola pacifica with notes on Abarenicola vagabonda and a concept of gardening in lugworms. Ophelia 14: 113–137.

    Google Scholar 

  • Hylleberg, J. and V.F. Gallucci 1975. Selectivity in feeding by the deposit-feeding bivalve Macoma nasuta. Mar. Biol. 32: 167–178.

    Google Scholar 

  • Iverson, T.M. 1974. Ingestion and growth in Sericostoma. personatum (Trichoptera) in relation to the nitrogen content of ingested leaves. Oikos 25: 278–282.

    Google Scholar 

  • Jaccarini, V. and P.J. Schembri 1977. Feeding and particle selection in the echiuran worm Bonellia viridis Rolands (Echiura: Bonelliidae). J. Exp. Mar. Biol. Ecol. 28: 163–181.

    Google Scholar 

  • Jaeger, R.G. and A.M. Rubin 1982. Foraging tactics of a terrestrial salamander: judging prey profitability. J. Anim. Ecol. 51: 167–176.

    Google Scholar 

  • Jumars, P.A. and R.F.L. Self 1986. Gut-marker and gut-fullness methods for estimating field and laboratory effects of sediment transport on ingestion rates of deposit feeders. J. Exp. Mar. Biol. Ecol. 98: 293–310.

    Google Scholar 

  • Jumars, P.A., R.F.L. Self and A.R.M. Nowell 1982. Mechanics of particle selection by tentaculate deposit feeders. J. Exp. Mar. Biol. Ecol. 64: 47–70.

    Google Scholar 

  • Khripounoff, A. and M. Sibuet 1980. La nutrition d’echinodermes abyssaux. I. Alimentation des holothuries. Mar. Biol. 60: 17–26.

    Google Scholar 

  • Kikuchi, E. and Y. Kurihara 1977. In vitro studies on the effects of tubificids on the biological, chemical and physical characteristics of submerged ricefield soil and overlying water. Oikos 29: 348–356.

    CAS  Google Scholar 

  • Kislalioglu, M. and R.N. Gibson 1976. Prey ‘handling time’ and its importance in food selection by the 15-spined stickleback, Spinachia (L.). J. Exp. Mar. Biol. Ecol. 25: 151–158.

    Google Scholar 

  • Kitchell, J.A. 1979. Deep-sea foraging pathways: an analysis of randomness and resource exploitation. Paleobiology 5: 107–125.

    Google Scholar 

  • Lane, J.M. and J.M. Lawrence 1982. Food, feeding and absorption efficiencies of the sand dollar, McIlita. quinquiesperforata (Leske). Estuar. Coast. Shelf Sci. 14: 421–431.

    Google Scholar 

  • Lee, K.E. 1985. Earthworms-Their Ecology and Relationships With Soil and Land Use. Academic Press, Sydney, 411 pp.

    Google Scholar 

  • Levinton, J.S. 1979. Deposit-feeders, their resources, and the study of resource limitation. In R.J. Livingston (ed), Ecological processes in coastal and marine systems. Plenum Press, New York, pp. 117–141.

    Google Scholar 

  • Levinton, J.S. 1987. The body size-prey size hypothesis and Hydrobia. Ecology 68: 229–231.

    Google Scholar 

  • Levinton, J.S. and G.R. Lopez 1977. A model of renewable resources and limitations of deposit-feeding benthic populations. Oecologia 31: 177–190.

    Google Scholar 

  • Lopez, G.R. and L.H. Kofoed 1980. Epipsammic browsing and deposit-feeding in mud snails (Hydrobiidae). J. Mar. Res. 38: 585–599.

    Google Scholar 

  • MacArthur, R.H. and E.R. Pianka 1966. On optimal use of a patchy environment. Am. Nat. 100: 603–609.

    Google Scholar 

  • Marais, J.F.K. 1980. Aspects of food intake, food selection, and alimentary canal morphology of Mugil cephalus (Linnaeus, 1958 [sic]), Liza. tricuspidens (Smith, 1935), L. richardsoni (Smith, 1846), and L. dumerili (Steindachner, 1869). J. Exp. Mar. Biol. Ecol. 44: 193–209.

    Google Scholar 

  • Martin, N.A. 1982. The interaction between organic matter in the soil and the burrowing activity of three species of earthworms (Oligochaeta: Lumbricidae). Pedobiologia 24: 1885–190.

    Google Scholar 

  • Massin, C. 1980. The sediment ingested by Holothuria tubulosa Gmel (Holothuroidea: Echinoderinata). In M. Jangoux (ed), Echinoderms: present and past. A.A. Balkema, Rotterdam, pp. 205–208.

    Google Scholar 

  • McGinnis, A.J. and R. Kasting 1967. Dietary cellulose: effect on food consumption and growth of a grasshopper. Can. J. Zool. 45: 365–367.

    Google Scholar 

  • McNair, J.N. 1981. A stochastic foraging model with predator training effects. II. Optimal diets. Theor. Pop. Biol. 19: 147–162.

    Google Scholar 

  • Meadows, P.S. and A.H. Bird 1974. Behaviour and local distribution of the freshwater oligochaete Nais pardalis Piguet (Family Naididae). Hydrobiologia 44: 265–275.

    Google Scholar 

  • Merson, M.H. and R.L. Kirkpatrick 1983. Role of energy intake in the maintenance of reproduction in female white-footed mice. Am. Midl. Nat. 109: 206–208.

    Google Scholar 

  • Miller, D.C. 1984. Mechanical post-capture particle selection by suspension-and deposit-feeding Corophium. J. Exp. Mar. Biol. Ecol. 82: 59–76.

    Google Scholar 

  • Miller, D.C. and P.A. Jumars 1986. Pellet accumulation, sediment supply, and crowding as determinants of surface deposit-feeding rate in Pseudopolydora kempi japonica Imajima and Hartman (Polychaeta: Spionidae.). J. Exp. Mar. Biol. Ecol. 99: 1–17.

    Google Scholar 

  • Mitchell, M.J. 1979. Functional relationships of inacroinvertebrates in heterotrophic systems with emphasis on sewage sludge decomposition. Ecology 60: 1270–1283.

    CAS  Google Scholar 

  • Monakov, A.V. 1972. Review of studies on feeding of aquatic invertebrates conducted at the Institute if Biology of Inland Waters, Academy of Sciences, USSR.. J. Fish. Res. Board Can. 29: 363–383.

    Google Scholar 

  • Montague, C.L. 1980. A natural history of temperate Western Atlantic fiddler crabs (genus [Ica) with reference to their impact on the salt marsh. Contrib. Mar. Sci. 23: 25–55.

    CAS  Google Scholar 

  • Moodie, G.E.E. and C.C. Lindsey 1972. Life-history of a unique cyprinid fish, the chiselmouth (Acrocheilus alutaceus), in British Columbia. Syesis 5: 55–61.

    Google Scholar 

  • Moriarty, D.J.W. 1977. Quantification of carbon, nitrogen, and bacterial biomass in the food of some penaeid prawns. Aust. J. Mar. Freshwat. Res. 28: 113–118.

    CAS  Google Scholar 

  • Moriarty, D.J.W. 1982. Feeding of Holothuria atra and Stichopus chloronotus on bacteria, organic carbon and organic nitrogen in sediments of the Great Barrier Reef. Aust. J. Mar. Freshwat. Res. 33: 255–263.

    Google Scholar 

  • Nichols, F.H. 1974. Sediment turnover by a deposit-feeding polychaete. Lirnnol. Oceanogr. 19: 945–950.

    Google Scholar 

  • Nielsen, M.V. and L.H. Kofoed 1982. Selective feeding and epipsammic browsing by the deposit-feeding amphipod Corophiurn volutator. Mar. Ecol. Prog. Ser. 10: 81–88.

    Google Scholar 

  • Odum, W.E. 1968. The ecological significance of fine particle selection by the striped mullet Mugil cephalus. Lirnnol. Oceanogr. 13: 92–98.

    Google Scholar 

  • Orians, G.H. and N.E. Pearson 1979. On the theory of central place foraging. In D.J. Horn, G.R. Stairs, and R.D. Mitchell (eds), Analysis of ecological systems. Ohio State University Press, Columbus, pp. 155–177.

    Google Scholar 

  • Otto, C. and B.J. Svensson 1981. A comparison between food, feeding and growth of two mayflies, Ephemera da.nica. and Siphlonurus aestivalis (Ephemeroptera) in a South Swedish stream. Arch. Hydrobiol. 91: 341–350.

    Google Scholar 

  • Payne, A.I. 1976. The relative abundance and feeding habits of the grey mullet species occurring in an estuary in Sierra Leone, West Africa. Mar. Biol. 35: 277–286.

    Google Scholar 

  • Penry, D.L. and P.A. Jumars 1987. Modeling animal guts as chemical reactors. Am. Nat. 129: 69–96.

    CAS  Google Scholar 

  • Petch, D.A. 1986. Selective deposit-feeding by Lumbrineris cflatreilli (Polychaeta: Lumbrineridae), with a new method for assessing selectivity by deposit-feeding organisms. Mar. Biol. 93: 443–448.

    Google Scholar 

  • Phillips, N.W. 1984. Compensatory intake can be consistent with an optimal foraging model. Am. Nat. 123: 867–872.

    Google Scholar 

  • Pianka, E.R. 1976. Natural selection of optimal reproductive tactics. Am. Zool. 16: 775–784.

    Google Scholar 

  • Pierce, G.J. and J.G. Ollason 1987. Eight reasons why optimal foraging theory is a complete waste of time. Oikos 49: 111–118.

    Google Scholar 

  • Powell, E.N. 1977. Particle size selection and sediment reworking in a funnel feeder, Leptosynapta tenuis (Holothuroidea, Synaptidae). Int. Revue Ges. Hydrobiol. 62: 385–408.

    Google Scholar 

  • Price, H.J. and G.-A. Paffenhöfer 1984. Effects of feeding experience in the copepod Eucalanus pileatus: a cinematographic study. Mar. Biol. 84: 35–40.

    Google Scholar 

  • Putnam, R.J. 1980. Consumption, protein and energy intake of fallow deer fawns on diets of differing nutritional quality. Acta Theriologica 25: 403–413.

    Google Scholar 

  • Pyke, G.H. 1984. Optimal foraging theory: a critical review. Ann. Rev. Ecol. Syst. 15: 523–575.

    Google Scholar 

  • Reading, C.J. 1979. Changes in the downshore distribution of Macoma balthica (L.) in relation to shell length. Estuar. Coast. Mar. Sci. 8: 1–13.

    Google Scholar 

  • Roberts, D. and C. Bryce 1982. Further observations on tentacular feeding mechanisms in holothurians. J. Exp. Mar. Biol. Ecol. 59: 151–163.

    Google Scholar 

  • Roberts, M.H. 1968. Functional morphology of mouth parts of the hermit crabs, Pagurus longicarpus and Pagurus pollicaris. Ches. Sci. 9: 9–20.

    Google Scholar 

  • Robertson, J.R., K. Bancroft, G. Vermeer and K. Plaisier 1980. Experimental studies on the foraging behavior of the sand fiddler crab Uca pugilator (Bose, 1802). J. Exp. Mar. Biol. Ecol. 44: 67–83.

    Google Scholar 

  • Robertson, J.R., J.A. Fudge and G.K. Vermeer 1981. Chemical and live feeding stimulants of the sand fiddler crab, Uca pugilator (Bosc). J. Exp. Mar. Biol. Ecol. 53: 47–64.

    CAS  Google Scholar 

  • Robertson, J.R. and S.Y. Newell 1982. Experimental studies of particle ingestion by the sand fiddler crab Uca pugilator (Bosc). J. Exp. Mar. Biol. Ecol. 59: 1–21.

    Google Scholar 

  • Savory, C.J. 1980. Meal occurrence in Japanese quail in relation to particle size and nutrient density. Anim. Behay. 28: 160–171.

    Google Scholar 

  • Scheibling, R.E. 1980. The microphagous feeding behavior of Oreaster reticulatus (Echinodermata: Asteroidea). Mar. Behay. Physiol. 7: 225–232.

    Google Scholar 

  • Scriber, J.M. and P. Feeny 1979. Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology 60: 829–850.

    Google Scholar 

  • Self, R.F.L. and P.A. Jumars 1978. New resource axes for deposit feeders? J. Mar. Res. 36: 627–641.

    Google Scholar 

  • Shick, J.M., K.C. Edwards and J.H. Dearborn 1981. Physiological ecology of the deposit-feeding sea star Ctenodiscus crispatus: ciliated surfaces and animal-sediment interactions. Mar. Ecol. Prog. Ser. 5: 165–184.

    Google Scholar 

  • Sibbald, I.R., S.J. Slinger and G.C. Ashton 1960. The weight gain and feed intake of chicks fed a ration diluted with cellulose or kaolin. J. Nutrition 72: 441–446.

    CAS  Google Scholar 

  • Sibly, R.M. 1981. Strategies of digestion and defecation. In C.R. Townsend and P. Calow (eds), Physiological ecology: an evolutionary approach to resource use. Sinauer Associates, Sunderland, pp. 109–139.

    Google Scholar 

  • Slansky, F. and P. Feeny 1977. Stabilization of the rate of nitrogen accumulation by larvae of the cabbage butterfly on wild and cultivated food plants. Ecol. Monogr. 47: 209–228.

    Google Scholar 

  • Speakman, J.R. 1986. The optimum search speed of terrestrial predators when feeding on sedentary prey: a predictive model. J. Theor. Biol. 122: 401–407.

    Google Scholar 

  • Stearns, S.C. and P. Schmid-Hempel 1987. Evolutionary insights should not be wasted. Oikos 49: 118–125.

    Google Scholar 

  • Streit, B. 1978. A note on the nutrition of Stylaria. lacustris (Oligochaeta: Naididae). Hydrobiologia 61: 273–276.

    Google Scholar 

  • Taghon, G.L. 1981. Beyond selection: optimal ingestion rate as a function of food value. Am. Nat. 118: 202–214.

    Google Scholar 

  • Taghon, G.L. 1982. Optimal foraging by deposit-feeding invertebrates: roles of particle size and organic coating. Oecologia 52: 295–304.

    Google Scholar 

  • Taghon, G.L. and P.A. Jumars 1984. Variable ingestion rate and its role in optimal foraging behavior of narine deposit feeders. Ecology 65: 549–558.

    Google Scholar 

  • Taghon, G.L., A.R.M. Nowell and P.A. Jumars 1984. Transport and breakdown of fecal pellets: biological and sedimentological implications. Limnol. Oceanogr. 29: 64–72.

    Google Scholar 

  • Taghon, G.L., R.F.L. Self and P.A. Jumars 1978. Predicting particle selection by deposit feeders: a model and its implications. Limnol. Oceanogr. 23: 752–759.

    Google Scholar 

  • Tanzen, S. and C.L. Gass 1986. Energy intake rates and nectar concentration preferences by hummingbirds. Oecologia 70: 20–23.

    Google Scholar 

  • Tevesz, M.J.S., F.M. Soster and P.L. McCall 1980. The effects of size-selective feeding by oligochaetes on the physical properties of river sediments. J. Sed. Petrol. 50: 561–568.

    Google Scholar 

  • Tietjen, J.H. and J.J. Lee 1975. Axenic culture and uptake of dissolved organic substances by the marine nematode, R. habditis marina Bastian. Cah. Biol. Mar. 16: 685–694.

    Google Scholar 

  • Townsend, C.R. and P. Calow (eds) 1981. Physiological ecology: an evolutionary approach. Sinauer Associates, Sunderland, Mass.

    Google Scholar 

  • Tsuchiya, T. and Y. Kurihara 1979. The feeding habits and food sources of the deposit-feeding polychaete, Neanthes japonica. (Izuka). J. Exp. Mar. Biol. Ecol. 36: 79–89.

    Google Scholar 

  • Valiela, I., D.F. Babiec, W. Atherton, S. Seitzinger and C. Krebs 1974. Some consequences of sexual dimorphism: feeding in male and female fiddler crabs, Ica pugnax (Smith). Biol. Bull. 147: 652–660.

    Google Scholar 

  • Valiela, I., L. Koumjian, T. Swain, J.M. Teal and J.E. Hobbie 1979. Cinnamic acid inhibition of detritus feeding. Nature 280: 55–57.

    CAS  Google Scholar 

  • Valiela, I., J. Wilson, R. Buchsbaum, C. Rietsma, D. Bryant, K. Foreman and J. Teal 1984. Importance of chemical composition of salt marsh litter on decay rates and feeding by detritivores. Bull. Mar. Sci. 35: 261–269.

    Google Scholar 

  • Venkatesh, K. and P.E. Morrison 1980. Crop filling and crop emptying by the stable fly Stomoxys calcitrans L. Can J. Zool. 58: 57–63.

    Google Scholar 

  • Warner, G.F. 1977. The biology of crabs. Elek, London, 202 pp.

    Google Scholar 

  • Weingarten, H.P. 1983. Conditioned cues elicit feeding in sated rats: a role for learning in meal inhibition. Science 220: 431–433.

    PubMed  CAS  Google Scholar 

  • White, T.C.R. 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33: 71–86.

    Google Scholar 

  • Whitlatch, R.B. 1974. Food-resource partitioning in the deposit-feeding polychaete Pectinaria gouldii. Biol. Bull. 147: 227–235.

    Google Scholar 

  • Whitlatch, R.B. and J.R. Weinberg 1982. Factors influencing particle selection and feeding rate in the polychaete Cistenides (Pectinaria) gouldii. Mar. Biol. 71: 33–40.

    Google Scholar 

  • Williams, J.P.G. and P.C.R. Hughes 1975. Catch-up growth in rats undernourished for different periods during the suckling period. Growth 39: 179–193.

    PubMed  CAS  Google Scholar 

  • Yingst, J.Y. 1982. Factors influencing rates of sediment ingestion by Parastichopus parvimensis (Clark), an epibenthic deposit-feeding holothurian. Estuar. Coast. Shelf Sci. 14: 119–134.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Taghon, G.L. (1989). Modeling Deposit Feeding. In: Lopez, G., Taghon, G., Levinton, J. (eds) Ecology of Marine Deposit Feeders. Lecture Notes on Coastal and Estuarine Studies, vol 31. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7671-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7671-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97001-1

  • Online ISBN: 978-1-4684-7671-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics