Skip to main content

Part of the book series: Biomembranes ((B,volume 7))

Abstract

Many roles are being ascribed to peptides in nature. These include hormonal activity, control of pituitary tropic hormone secretion, translocation of ions across membranes, regulation of cell growth, memory transmission, carcinogenesis, and antimicrobial and nutritional activity. Some of these activities have been reported to be extracellular, i.e., activation of an endogenous system as a result of the peptide binding to a specific receptor on the membrane; however, others might require the entrance of the peptide into the cell. It is therefore of great interest to determine whether peptides as such can cross membranes and to study this process of peptide transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addison, J. M., Burston, D., and Matthews, D. M., 1972, Evidence for active transport of dipeptide glycylsarcosine by hamster jejunum in vitro, Clin. Sci. 43: 907–911.

    PubMed  CAS  Google Scholar 

  • Addison, J. M., Burston, D., and Matthews, D. M., 1973, Carnosine transport by hamster jejunum in vitro and its inhibition by other di-and tripeptides, Clin. Sci. and Molec. Med. 45: 3–4 p.

    Google Scholar 

  • Addison, J. M., Burston, D., and Matthews, D. M., 1974a, Transport of the tripeptide ß-alanyl-glycyl-glycine by hamster jejunum in vitro, Clin. Sci. Molec. Med. 46: 5–6 p.

    Google Scholar 

  • Addison, J. M., Burston, D., Matthews, D. M., Payne, J. W., and Wilkinson, S., 1974b, Evidence for active transport of the tripeptide glycylsarcosylsarcosine by hamster jejunum in vitro, Clin. Sci. Malec. Med., 46: 30 P.

    Google Scholar 

  • Addison, J. M., Matthews, D. M., and Burston, D., 1974c, Competition between carnosine and other peptides for transport by hamster jejunum in vitro, Clin. Sci. Malec. Med. 46: 707–714.

    CAS  Google Scholar 

  • Agar, W. T., Hired, F. J. R., and Sidhu, G. S., 1953, The active absorption of amino acids by the intestine, J. Physiol. 121: 255–263.

    PubMed  CAS  Google Scholar 

  • Ames, B. N., Ames, G. F., Young, J. D., Isuchiya, D., and Lecocq, J., 1973a, Illicin transport, the oligopeptide permease, Proc. Nat. Acad. Sci. U. S. 70: 456–458.

    CAS  Google Scholar 

  • Ames, B. N., Lee, F. D., and Durston, W. E., 1973b, An improved bacterial test system for the detection and classification of mutagens and carcinogens, Proc. Nat. Acad. Sci. U. S. 70: 782–786.

    CAS  Google Scholar 

  • Ames, G. F., Spudich, E. N., and Nikaido, H., 1974, Protein composition of the outer membrane of Salmonella typhimurium: effect of lipopolysaccharide mutations, J. Bacterial. 117: 406–416.

    CAS  Google Scholar 

  • Asatoor, A. M., Bandoch, J. K., Lant, A. F., Milne, M. D., and Navab, F., 1970a, Intestinal absorption of carnosine and its constitutent amino acids in man, Gut 11: 250–254.

    PubMed  CAS  Google Scholar 

  • Asatoor, A. M., Cheng, B., Edwards, K. D. G., Lant, A. P., Matthews, D. M., Milne, M. D., Naveb, F., and Richards, A. J., 1970b, Intestinal absorption of two dipeptides in Hartnup disease, Gut 11: 380–389.

    PubMed  CAS  Google Scholar 

  • Asatoor, A. M., Crouchman, M. R., Harrison, A. R., Light, F. W., Loughridge, L. W., Milne, M. D., and Richards, A. J., 1971, Intestinal absorption of oligopeptides in cystinuria, Clin. Sci. 41: 23–33.

    PubMed  CAS  Google Scholar 

  • Asatoor, A. M., Harrison, B. D. W., Milne, M. D., and Prosser, D. I., 1972, Intestinal absorption of an arginine-containing peptide in cystinuria, Gut 13: 95–98.

    PubMed  CAS  Google Scholar 

  • Asatoor, A. M., Chadha, A. K., Milne, M. D., and Prosser, D. I., 1973, Intestinal absorption of stereoisomers of dipeptides in the rat, Brit. J. Nutr. 28: 417–423.

    Google Scholar 

  • Barak, Z., 1972, Effect of basic oligopeptides on the biosynthesis of macromolecules, Ph.D. thesis, Weizmann Institute of Science.

    Google Scholar 

  • Barak, Z., and Gilvarg, C., 1974, Triornithine-resistant strain of Escherichia coli: isolation, definition and genetic studies, J. Biol. Chem. 249: 143–148.

    PubMed  CAS  Google Scholar 

  • Barak, Z., Sarid, S., and Katchalski, E., 1970, Effect of tri-L-ornithine on nucleic acid and protein biosynthesis in intact and bacteriophage infected E. coli B cells, Israel J. Chem. 8: 121.

    Google Scholar 

  • Barak, Z., Sarid, S., and Katchalski, E., 1973a, Inhibition of protein biosynthesis in Escherichia coli B tri-L-ornithine, Eur. J. Biochem. 34: 317–324.

    PubMed  CAS  Google Scholar 

  • Barak, Z., Sarid, S., and Katchalski, E., 1973b, Inhibition of T4 maturation by tri-Lornithine, Eur. J. Biochem. 34: 325–328.

    PubMed  CAS  Google Scholar 

  • Becker, J. M., Naider, F., and Katchalski, E., 1973, Peptide utilization in yeast: studies on methionine and lysine auxotrophs of Saccharomyces cerevisiae, Biochim. Biophys. Acta 291: 388–397.

    PubMed  CAS  Google Scholar 

  • Berger, E. A., 1973, Different mechanisms of energy coupling for active transport of proline and glutamine in Escherichia coli, Proc. Nat. Acad. Sci. U. S. 70: 1514–1518.

    CAS  Google Scholar 

  • Best, C. H., and Taylor, N. B., 1950, “The Physiological Basis of Medical Practice,” 5th ed., p. 588, Bailliere, Tindall and Cox, London.

    Google Scholar 

  • Brock, T. D., and Wooley, S. O., 1964, Glycylglycine uptake in Streptococci and a possible role of peptides in amino acid transport, Arch. Biochem. Biophys. 105: 51–57.

    PubMed  CAS  Google Scholar 

  • Burston, D., Addison, J. M., and Matthews, D. M., 1972, Uptake of dipeptides containing basic and acidic amino acids by rat small intestine in vitro, Clin. Sci. 43: 823–837.

    PubMed  CAS  Google Scholar 

  • Cajori, F. A., 1933, The enzyme activity of dogs’ intestinal juice and its relation to intestinal digestion, Am. J. Physiol. 104: 659–668.

    CAS  Google Scholar 

  • Cheeseman, C. I., and Smyth, D. H., 1973, Specific transfer process for intestinal absorption of peptides, J. Physiol. 229: 45–46 P.

    Google Scholar 

  • Cheng, B., and Matthews, D. M., 1970, Rates of uptake of amino acid from L-methionine and the peptide L-methionyl-L-methionine by rat small intenstine in vitro, J. Physiol. 210: 37–38 P.

    Google Scholar 

  • Cheng, B., Navab, F., Lis, M. T., Miller, T. N., and Matthews, D. M., 1971, Mechanisms of dipeptide uptake by rat small intenstine in vitro, Clin. Sci. 40: 247–259.

    PubMed  CAS  Google Scholar 

  • Choutes, G. L., and Gray, W. R., 1971, Peptidase activity in the membranes of Mycoplasma laidlawii, Biochem. Biophys. Res. Commun. 45: 849–855.

    Google Scholar 

  • Cohnheim, O., 1901, Die umwandlung des eiweiss durch die darmwand, Z. Physiol. Chem. 33: 451–465.

    CAS  Google Scholar 

  • Costerton, J. W., Ingram, J. M., and Cheng, K. J., 1974, Structure and function of the cell envelope of gram-negative bacteria, Bacteriol. Rev. 38: 87–110.

    PubMed  CAS  Google Scholar 

  • Craft, I. L., and Matthews, D. M., 1968, The absorption of glycine and glycylglycine in man, following surgery and in gastrointestinal disorders, Brit. J. Surg. 55: 158.

    Google Scholar 

  • Craft, I. L., Geddes, D., Hydge, C. W., Wise, I. J., and Matthews, D. M., 1968, Absorption and malabsorption of glycine and glycine peptides in man, Gut 9: 425–427.

    PubMed  CAS  Google Scholar 

  • Crampton, R. F., Gangolli, S. D., Simson, P., and Matthews, D. M., 1971, Rates of absorption by rat intestine of pancreatic hydrolysates of proteins and their corresponding amino acid mixtures, Clin. Sci. 41: 309–417.

    Google Scholar 

  • De Felice, M., Guardiola, J., Lamberti, A., and laccarino, M., 1973, Escherichia coli K-12 mutants altered in the transport systems for oligo-and dipeptides, J. Bacteriol. 116: 751–756.

    Google Scholar 

  • Dunn, F. W., Humphreys, J., and Shive, W., 1957, Utilization of tripeptides, Arch. Biochem. Biophys. 71: 475–476.

    PubMed  CAS  Google Scholar 

  • Dvorak, H. F., Wetzel, B. K., and Heppel, L. A. 1970, Biochemical and cytochemical evidence for the polar concentration of periplasmic enzymes in a minicell strain of Escherichia coli, J. Bacteriol. 104: 543–548.

    PubMed  CAS  Google Scholar 

  • Fern, E. B., Hider, R. C., and London, D. R., 1969, The site of hydrolysis of dipeptides containing leucine and glycine by rat jejunum in vitro, Biochem. J. 114: 855–861.

    PubMed  CAS  Google Scholar 

  • Fickel, T. E., 1973, The oligopeptide permease of E. coli as a vehicle for the transport of impermeant substances and its accessibility to large oligopeptides, Ph.D. thesis, Princeton University.

    Google Scholar 

  • Fickel, T. E., and Gilvarg, C., 1973, Transport of impermeant substances in E. coli by way of oligopeptide permease, Nature, New Biol. 241: 161–163.

    CAS  Google Scholar 

  • Florsheim, H. A., Makineni, S., and Shankman, S., 1962, The isolation, identification and synthesis of a peptide growth factor for P. cerevisiae, Arch. Biochem. Biophys. 97: 243–249.

    PubMed  CAS  Google Scholar 

  • Ford, J. E., and Shorrock, C., 1971, Metabolism of heat-damaged proteins in the rat. Influence of heat damage on the excretion of amino acids and peptides in the urine, Brit. J. Nutr. 26: 311–322.

    PubMed  CAS  Google Scholar 

  • Fordham, W. D., and Gilvarg, C., 1974, Kinetics of crosslinking of peptidoglycan in Bacillus megaterium, J. Biol. Chem. 249: 2478–2482.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1945, The arginine, ornithine and carbon dioxide requirements of Streptococci (Lancefield group D) and their relation to argine dehydrolase activity, Brit. J. Exp. Path. 26: 225–233.

    PubMed  CAS  Google Scholar 

  • Gangolli, S. D., Simson, P., Lis, M. T., Crampton, R. F., and Matthews, D. M., 1970, Amino acid and peptide uptake in protein absorption, Clin. Sci. 39: 18 P.

    Google Scholar 

  • Gibson, Q. H., and Wiseman, G., 1951, Selective absorption of stereoisomers of amino acids from loops of the small intestine of the rat, Biochem. J. 48: 426–429.

    PubMed  CAS  Google Scholar 

  • Gilvarg, C., 1972, Peptide transport in bacteria, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 11, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Gilvarg, C., and Katchalski, E., 1965, Peptide utilization in Escherichia coli, J. Biol. Chem. 240: 3093–3098.

    PubMed  CAS  Google Scholar 

  • Gilvarg, C., and Levin, Y., 1972, Response of Escherichia coli to ornithyl peptides, J. Biol. Chem. 247: 543–549.

    PubMed  CAS  Google Scholar 

  • Guardiola, J., and Iaccarino, M., 1971, Escherichia coli K-12 mutants altered in the transport of branched-chain amino acids, J. Bacteriol. 108: 1034–1044.

    CAS  Google Scholar 

  • Hauschild, A. H. W., 1965, Incorporation of 14C from amino acids and peptides into protein by clostridium perfringens type D, J. Bacteriol. 90: 1569–1574.

    PubMed  CAS  Google Scholar 

  • Hellier, M. D., Perret, D., and Holdsworth, C. D., 1970, Dipeptide absorption in cystinuria, Brit. Med. J. 4: 782–793.

    PubMed  CAS  Google Scholar 

  • Hellier, M. D., Perret, D., Holdsworth, C. D., and Thirumalai, 1971, Absorption of dipeptides in normal and cystinuric subjects, Gut 12: 496–497.

    PubMed  CAS  Google Scholar 

  • Hellier, M. D., Holdsworth, C. D., Perrett, D., and Thirumalai, C., 1972, Intestinal dipeptide transport in normal and cystinuric subjects, Clin. Sci. 43: 659–668.

    PubMed  CAS  Google Scholar 

  • Henning, U., Braun, V., Höhn, B., and Schwarz, U., 1972, Cell envelope and shape of Escherichia coli K-12, properties of a temperature-sensitive rod mutant, Eur. J. Biochem. 26: 570–586.

    PubMed  CAS  Google Scholar 

  • Heppel, L. A., Rosen, B. P., Friedberg, I., Berger, E. A., and Weiner, J. H., 1972, The molecular basis of biological transport, in “Miami Winter Symposia,” Vol. 3, pp. 133–156.

    Google Scholar 

  • Hueckel, H. J., and Rogers, Q. R., 1972, Prolylhydroxyproline absorption in hamsters, Can. J. Biochem. 50: 782–790.

    PubMed  CAS  Google Scholar 

  • Johnston, J. M., and Wiggans, D. S., 1958, The absorption in vitro of alanylphenylalanine, Biochim. Biophys. Acta 27: 224–225.

    PubMed  CAS  Google Scholar 

  • Kadner, R. J., and Liggins, G. L., 1973, Transport of vitamin B12 in Escherichia coli: genetic studies, J. Bacteriol. 115: 514–521.

    PubMed  CAS  Google Scholar 

  • Kamiryo, T., and Strominger, J. L., 1974, Penicillin-resistant temperatures ensitive mutants of Escherichia coli which synthesize hypo-or hyper-cross-linked peptidoglycan, J. Bacteriol. 117: 568–577.

    PubMed  CAS  Google Scholar 

  • Kessel, D., and Lubin, M., 1963, On the distinction between peptidase activity and peptide transport, Biochim. Biophys. Acta 71: 656–663.

    PubMed  CAS  Google Scholar 

  • Kihara, H., and Snell, E. C., 1952, Peptides and bacterial growth: L-alanine peptides and growth of Lactobacillus casei, J. Biol. Chem. 197: 791–800.

    PubMed  CAS  Google Scholar 

  • Kihara, H., Ikawa, M., and Snell, E. E., 1961, Peptides and bacterial growth: relation of uptake and hydrolysis to utilization of D-alanine peptides for growth of Streptococcus faecalis, J. Biol. Chem. 236: 172–176.

    PubMed  CAS  Google Scholar 

  • Koplow, J., and Goldfine, H., 1974, Alterations in the outer membrane of the cell envelope of heptose-deficient mutants of Escherichia coli, J. Bacteriol. 117: 527–543.

    PubMed  CAS  Google Scholar 

  • Kornberg, H. J., 1972, in Discussion to: Membrane digestion and peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 137, Ciba Foundation Symposium, Elsevier Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Leach, F. R., and Snell, E. E., 1959, Occurrence of independent uptake mechanisms for glycine and glycine peptides in Lactobacillus casei, Biochim. Biophys. Acta 34: 292–293.

    PubMed  CAS  Google Scholar 

  • Leach, F. R., and Snell, E. E., 1960, The absorption of glycine and alanine and their peptides by Lactobacillus casei, J. Biol. Chem. 235: 3523–3531.

    PubMed  CAS  Google Scholar 

  • Lehmann, V., Hammerling, G., Nurminen, M., Ruschmann, E., Luderitz, O., Kuo, T., and Stocker, B. A. D., 1973, A new class of heptose-defective mutant of Salmonella typhimurium, Euro. J. Biochem. 32: 268–275.

    CAS  Google Scholar 

  • Leive, L., 1968, Studies on the permeability change produced in coliform bacteria by ethylenediaminetetraacetate, J. Biol. Chem. 243: 2373–2380.

    PubMed  CAS  Google Scholar 

  • Leive, L., Shovlin, V. K., and Mergenhagen S. E., 1968, Physical chemical and immunological properties of lipopolysaccharide released from Escherichia coli by ethylenediaminetetraacetate, J. Biol. Chen. 243: 6384–6391.

    CAS  Google Scholar 

  • Levine, E. M., and Simmonds, S., 1960, Metabolite uptake by serine-glycine auxotrophs of Escherichia coli, J. Biol. Chem. 235: 2902–2909.

    PubMed  CAS  Google Scholar 

  • Levine, E. M., and Simmonds, S., 1962, Further studies on metabolite uptake by serine-glycine auxotrophs of Escherichia coli, J. Biol. Chem. 237: 3718–3724.

    PubMed  CAS  Google Scholar 

  • Lindsay, S. S., Wheeler, B., Sanderson, K. E., Costerton, J. W., and Cheng, K. J., 1973, The release of alkaline phosphatase and lipopolysaccharide during growth of rough and smooth strains of Salmonella tiphimurium, Can. J. Microbiol. 19: 333–343.

    Google Scholar 

  • Lis, M. T., Crampton, R. F., and Matthews, D. M., 1971, Rates of absorption of a dipeptide and the equivalent free amino acid in various mammalian species, Biochim. Biophys. Acta 233: 453–455.

    PubMed  CAS  Google Scholar 

  • MacAlister, T. J., Costerton, J. W., Thompson, L., Thompson, J., and Ingram, J. M., 1972, Distribution of alkaline phosphatase within the periplasmic space of gram-negative bacteria, J. Bacteriol. 111: 827–832.

    PubMed  CAS  Google Scholar 

  • Matheson, A. T., and Murayama, T., 1966, The limited release of ribosomal peptidase during formation of Escherichia coli spheroplasts, Can. J. Biochem. 44: 1407–1415.

    CAS  Google Scholar 

  • Matthews, D. M., 1971a, Experimental Approach in chemical pathology, Brit. Med. J. 3: 659–664.

    PubMed  CAS  Google Scholar 

  • Matthews D. M. 1971b, Protein absorption, J. Clin. Path. 24, Suppl. Roy Coll. Path. 5: 29–40.

    Google Scholar 

  • Matthews, D. M., 1972a, Rates of Peptide uptake by small intestine, in “Peptide Transport in Bacteria and Mammalian Gut,” pp. 71–88, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Matthews, D. M., 1972b, Intestinal absorption of amino acids and protein, Proc. Nutr. Soc. 31: 171–177.

    PubMed  CAS  Google Scholar 

  • Matthews, D. M., Lis, M. T., Cheng, B., and Crampton, R. F., 1969, Observations on the intestinal absorption of some oligopeptides of methionine and glycine in the rat, Clin. Sci. 37: 751–764.

    PubMed  CAS  Google Scholar 

  • Matthews, D. M., Addison, J. M., and Burston, D., 1974, Evidence for active transport of the dipeptide carnosine (ß-alanyl-L-histidine) by hamster jejunum in vitro, Clin. Sci. Molec. Med. 46: 693–705.

    CAS  Google Scholar 

  • Mayshak, J., Yoder, O. C., Beamer, K. C., and Shelton, D. C., 1966, Inhibition and transport kinetic studies involving L-leucine, L-valine and their dipeptides in Leuconostic mesenteroides, Arch. Biochem. Biophys. 113: 189–194.

    PubMed  CAS  Google Scholar 

  • Meinhart, J. O., and Simmonds, S., 1955, Metabolism of serine and glycine peptides by mutants of Escherichia coli Strain K-12 J. Biol. Chem. 216: 51–65.

    PubMed  CAS  Google Scholar 

  • Meisler, N., and Simmonds, S., 1963, The metabolism of glycyl-L-leucine by Escherichia coli, J. Gen. Microbiol. 31: 109–123.

    PubMed  CAS  Google Scholar 

  • Merrifield, R. B., and Woolley, D. W., 1956, The synthesis of L-seryl-L-histidyl-L-leucyl-Lvalyl-L-glutamic acid, a peptide with strepogenin activity, J. Am. Chem. Soc. 78: 4646–4649.

    CAS  Google Scholar 

  • Messerli, H., 1913, -Ober die Resorptiongeschwindigkeit der Eiweisse und ihrer Abbauprodukte in Dünndarm, Biochem. Z. 54: 446–473.

    Google Scholar 

  • Miller, A., Neidle, A., and Welsch, H., 1955, Chemical stability and metabolic utilization of asparagine peptides, Arch. Biochem. Biophys. 56: 11–21.

    PubMed  CAS  Google Scholar 

  • Milne, M. D., 1971, Transport of amino acids and peptides in the gut and the kidney, Sci. Basis Med. 1971: 161–177.

    Google Scholar 

  • Milne, M. D., 1972, Peptides in genetic errors of amino acid transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 93, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Monner, D. A., Jonsson, S., and Boman, H. G., 1971, Ampicillin-resistant mutants of Escherichia coli K-12 with lipoplysaccharide alterations affecting mating ability and susceptibility to sex-specific bacteriophages, J. Bacteriol. 107: 420–432.

    PubMed  CAS  Google Scholar 

  • Mueller, J. H., 1938, The utilization of carnosine by Diphteria bacillus, J. Biol. Chem. 123: 421–432.

    CAS  Google Scholar 

  • Muller-Hill, B., Crapo, L., and Gilbert, W., 1968, Mutants that make more lac repressor, Proc. Nat. Acad. Sci. U. S. 59: 1259–1264.

    CAS  Google Scholar 

  • Naider, F., Becker, J. M., and Katzir-Katchalski, E., 1974, Utilization of methioninecontaining peptides and their derivatives by a methionine-requiring auxotroph of Saccharomyces cerevisiae, J. Biol. Chem. 249: 9–20.

    PubMed  CAS  Google Scholar 

  • Navab, F., and Asatoor, A. M., 1970, Studies on intestinal absorption of amino acids and a dipeptide in a case of Hartnup disease, Gut 11: 373–379.

    PubMed  CAS  Google Scholar 

  • Neu, H. C., and Heppel, L. A., 1966, The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts, J. Biol. Chem. 240: 3605–3692.

    Google Scholar 

  • Newey, H., and Smyth, D. H., 1957, Intestinal absorption of dipeptides, J. Physiol. 135: 3–44.

    Google Scholar 

  • Newey, H., and Smyth, D. H., 1959, The intestinal absorption of some dipeptides, J. Physiol. 145: 48–56.

    PubMed  CAS  Google Scholar 

  • Newey, H., and Smyth, D. H., 1960, Intracellular hydrolysis of dipeptides during intestinal absorption, J. Physiol. 152: 367–380.

    PubMed  CAS  Google Scholar 

  • Newey, H., and Smyth, D. H., 1962, Cellular mechanisms in intestinal transport of amino acids, J. Physiol. 164: 527–551.

    PubMed  CAS  Google Scholar 

  • Payne, J. W., 1968, Oligopeptide transport in Escherichia coli: specificity with respect to side chain and distinction from dipeptide transport, J. Biol. Chem. 243: 33953403.

    Google Scholar 

  • Payne, J. W., 1971a, The requirement for the protonated a-amino group for the transport of peptides in Escherichia coli, Biochem. J. 123: 245–253.

    PubMed  CAS  Google Scholar 

  • Payne, J. W., 1971b, The utilization of prolyl peptides by Escherichia coli, Biochem. J. 123: 255–260.

    PubMed  CAS  Google Scholar 

  • Payne, J. W., 1972a, Mechanisms of bacterial peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 17, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Payne, J. W., 1972b, Effects of N-methylpeptide bonds on peptide utilization by Escherichia coli, J. Gen. Microbiol. 71: 259–265.

    PubMed  CAS  Google Scholar 

  • Payne, J. W., 1972c, in Discussion to: Mechanisms of bacterial peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 38, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Payne, J. W., 1973, Peptide utilization in Escherichia coli: Studies with peptides containing ß-alanyl residues, Biochim. Biophys. Acta 298: 469–478.

    CAS  Google Scholar 

  • Payne, J. W., 1974, Peptide transport in Escherichia coli: Permease specificity towards terminal amino group substituents, J. Gen. Microbiol. 80: 269–276.

    PubMed  CAS  Google Scholar 

  • Payne, J. W., and Gilvarg, C., 1968a, The role of terminal carboxyl group in peptide transport in Escherichia coli, J. Biol. Chem. 243: 335–340.

    CAS  Google Scholar 

  • Payne, J. W., and Gilvarg, C. 1968b, Size restriction on peptide utilization in Escherichia coli, J. Biol. Chem. 243: 6291–6299.

    PubMed  CAS  Google Scholar 

  • Payne, J. W., and Gilvarg, C., 1971, Peptide transport, Advan. Enzymol. 35: 187–244.

    CAS  Google Scholar 

  • Pecht, M., Giberman, E. Keysary, A., Yariv, J., and Katchalski, E., 1972, Hydrolysis of alanine oligopeptides by an enzyme located in the membrane of Mycoplasma laidlawii, Biochim. Biophys. Acta 290: 267–273.

    PubMed  CAS  Google Scholar 

  • Peters, V. J., Prescott, J. M., and Snell, E. E., 1953, Peptides and bacterial growth: Histidine peptides as growth factors for Lactobacillus delbrueckii 9649, J. Biol. Chem. 202: 521–532.

    PubMed  CAS  Google Scholar 

  • Pittman, K. A., Lakshmanan, S., and Bryant, M. P., 1967, Oligopeptide uptake by Bacteroides ruminicola, J. Bacteriol. 93: 1499–1508.

    PubMed  CAS  Google Scholar 

  • Prescott, J. M., Peters, V. J., and Snell, E. E., 1953, Peptides and bacterial growth: Serine peptides and growth of Lactobacillus delbrueckii 9649, J. Biol. Chem. 202: 533–540.

    PubMed  CAS  Google Scholar 

  • Rooney, S. A., and Goldfine, H., 1972, Isolation and characterization of 2-keto-3deoxyoctonate-lipid A from a heptose deficient mutant of Escherichia coli, J. Bacteriol. 111: 531–541.

    CAS  Google Scholar 

  • Rubino, A., Field, M., and Shwachman, H., 1971, Intestinal transport of amino acid residues of dipeptides: Influx of the glycine residue of glycyl-L-proline across mucosal border, J. Biol. Chem. 246: 3542–3548.

    PubMed  CAS  Google Scholar 

  • Schmidt, G., Jann, B., and Jann, K., 1969, Immunochemistry of R lipopolysaccharides of Escherichia coli, different core regions in the lipopolysaccharides of 0 group 3, Eur. J. Biochem. 10: 501–510.

    PubMed  CAS  Google Scholar 

  • Schmidt, G., Jann, B., and Jann, K., 1970, Immunochemistry of R lipopolysaccharides of Escherichia coli, studies on R mutants with an incomplete core, derived from E. coli 08:K27, Eur. J. Biochem. 16: 382–392.

    PubMed  CAS  Google Scholar 

  • Shankman, S., Higa, S., Florsheim, H. A., Schvo, Y., and Gold, V., 1960, Peptide studies: Growth-promoting activity of peptides of L-leucine and L- and D-value for lactic acid bacteria, Arch. Biochem. Biophys. 86: 204–209.

    PubMed  CAS  Google Scholar 

  • Shankman, S., Higa, S., and Gold, V., 1961, Peptide studies: Inhibition of bacterial growth by di-and tripeptides, Texas Rept. Biol. Med. 19: 358–369.

    CAS  Google Scholar 

  • Shankman, S., Gold, V., Higa, S., and Squires, R., 1962, On the mode of action of a peptide inhibitor of growth in P. cerevisiae, Biochem. Biophys. Res. Communs. 9: 25–31.

    CAS  Google Scholar 

  • Shelton, D. C., and Nutter, W. E., 1964, Uptake of valine and glycylvaline by Leuconostoc mesenteroides, J. Bacteriol. 88: 1175–1184.

    CAS  Google Scholar 

  • Simmonds, S., 1966, The role of dipeptidases in cells of Escherichia coli K-12, J. Biol. Chem. 241: 2502–2508.

    PubMed  CAS  Google Scholar 

  • Simmonds, S., 1970, Peptidase activity and peptide metabolism in Escherichia coli K-12, Biochem. 9: 1–9.

    CAS  Google Scholar 

  • Simmonds, S., 1972, Peptidase activity and peptide metabolism in Escherichia coli, in “Peptide Transport in Bacteria and Mammalian Gut,” p. 43, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Simmonds, S., and Fruton, J. S., 1948, The utilization of proline derivatives by mutant strains of Escherichia coli, J. Biol. Chem. 174: 705–715.

    CAS  Google Scholar 

  • Simmonds, S., and Griffith, D. D., 1962, Metabolism of phenylalanine containing peptide amides in Escherichia coli, J. Bacteriol. 83: 256–263.

    CAS  Google Scholar 

  • Simmonds, S., and Toye, N. O., 1966, Peptidases in spheroplasts of Escherichia coli K-12, J. Biol. Chem. 241: 3852–3860.

    PubMed  CAS  Google Scholar 

  • Simmonds, S., Tatum, E. L., and Fruton, J. S., 1947, The utilization of phenylalanine and tyrosine derivatives by mutant strains of Escherichia coli, J. Biol. Chem. 169: 91–101.

    CAS  Google Scholar 

  • Simmonds, S., Harris, J. I., and Fruton, J. S., 1951, Inhibition of bacterial growth by leucine peptides, J. Biol. Chem. 188: 251–262.

    PubMed  CAS  Google Scholar 

  • Smith, R. L., Archer, E. G., and Dunn, F. W., 1970, Uptake of “C-labeled tri-, tetra-and pentapeptides of phenylalanine and glycine by Escherichia coli, J. Biol. Chem. 245: 2962–2966.

    CAS  Google Scholar 

  • Starling, E. H., 1906, “Recent Advances in the Physiology of Digestion,” p. 127, Constable, London.

    Google Scholar 

  • Sussman, A. J., and Gilvarg, C., 1970, Peptidases in Escherichia coli K-12 capable of cleaving lysine homopeptides, J. Biol. Chem. 245: 6518–6524.

    PubMed  CAS  Google Scholar 

  • Sussman, A. J., and Gilvarg, C., 1971, Peptide transport and metabolism in bacteria, Ann. Rev. Biochem. 40: 397–408.

    PubMed  CAS  Google Scholar 

  • Tamaki, S., and Matsuhashi, M., 1973, Increase in sensitivity to antibiotics and lysozyme on deletion of lipopolysaccharides in Escherichia coli strains, J. Bacteriol. 114: 453454.

    Google Scholar 

  • Tamaki, S., Sato, T., and Matsuhashi, M., 1971, Role of lipopolysaccharides in antibiotic resistance and bacteriophage absorption of Escherichia coli K-12, J. Bacteriol. 105: 968–975.

    PubMed  CAS  Google Scholar 

  • Takagaki, Y., Kunugita, K., and Matsuhashi, M., 1973, Evidence for direct action of colicin K on aerobic 32Pi uptake in Escherichia coli in-vivo and in-vitro, J. Bacteriol. 113: 42–50.

    CAS  Google Scholar 

  • Tarlow, M. J., Seakins, J. W. T., Lloyd, J. K., Matthews, D. M., Cheng, B., and Thomas, A. J., 1970, Intestinal absorption and biopsy transport of peptides and amino acids in Hartnup disease, Clin. Sci. 39: 18–19 p.

    Google Scholar 

  • Ugolev, A. M., 1972, Membrane digestion and peptide transport, in “Peptide Transport in Bacteria and Mammalian Gut,” pp. 123–137, Ciba Foundation Symposium, Elsevier, Excerpta Medica, North-Holland, Associated Scientific Publishers, Amsterdam, London, New York.

    Google Scholar 

  • Ugolev, A. M., and DeLaey, P., 1973, Membrane digestion: a concept of enzymic hydrolysis of cell membranes, Biochim. Biophys. Acta 300: 105–128.

    PubMed  CAS  Google Scholar 

  • Van Lenten, E. J., and Simmonds, S., 1967, Dipeptidases in spheroplasts and osmotically shocked cells prepared from Escherichia coli K-12, J. Biol. Chem. 242: 1439–1444.

    PubMed  Google Scholar 

  • Van Slyke, D. D., and Meyer, G. M., 1912, The amino acid nitrogen of the blood. Preliminary experiments on protein assimilation, J. Biol. Chem. 12: 399–410.

    Google Scholar 

  • Van Slyke, D. D., and Meyer, G. M., 1913–1914, The fate of protein digestion products in the body. The absorption of amino acids from the bood by the tissues, J. Biol. Chem. 16: 197–212.

    Google Scholar 

  • Vonder Haar, R. A., and Umbarger, H. E., 1972, Isoleucine and valine metabolism in Escherichia coli, J. Bacteriol. 112: 142–147.

    Google Scholar 

  • Wahren, A., and Gibbons, R. J., 1970, Amino acid fermentation by Bacteroides melaninogenicus, Antonie van Leeuwenhoek J. Microbiol. Serol. 36: 149–159.

    CAS  Google Scholar 

  • Wahren, A., and Holme, T., 1973, Amino acid and peptide requirement of Fusiformis necrophorus, J. Bacteriol. 116: 279–284.

    PubMed  CAS  Google Scholar 

  • Wang, C. C., and Newton, A., 1969, Iron transport in Escherichia coli: relation between chromium sensitivity and high iron requirement in mutants of Escherichia coli, J. Bacterial. 98: 1135–1141.

    CAS  Google Scholar 

  • Wetzel, B. K., Spicer, S. S., Dvorak, H. F., and Heppel, L. A., 1970, Cytochemical localization of certain phosphatases in Escherichia coli, J. Bacteriol. 104: 529–542.

    CAS  Google Scholar 

  • White, J. C., Di Girolamo, P. M., Fu, M. L., Preston, Y., and Bradbeer, C., 1973, Transport of vitamin Bu in Escherichia coli, location and properties of the initial B12-binding site, J. Biol. Chem. 248: 3978–3986.

    PubMed  CAS  Google Scholar 

  • Wiggans, D. S., and Johnston, J. M., 1959, The absorption of peptides, Biochim. Biophys. Acta 32: 69–73.

    PubMed  CAS  Google Scholar 

  • Wiseman, G., 1953, Absorption of amino acids using an in-vitro technique, J. Physiol. 120: 63–72.

    PubMed  CAS  Google Scholar 

  • Woolley, D. W., Merrifield, R. B., Ressler, C., and Du Vigneaud, V., 1955, Strepogenin activity of synthetic peptides related to oxytocin, Proc. Soc. Exp. Biot Med. 89: 669–673.

    CAS  Google Scholar 

  • Wu, H. C., 1972, Isolation and characterization of an Escherichia coli mutant with alteration in the outer membrane proteins of the cell envelope, Biochim. Biophys. Acta 290: 274–289.

    PubMed  CAS  Google Scholar 

  • Yoder, O. C., Beamer, K. C., and Shelton, D. C., 1965a, Structural and stereochemical specificity of transport systems for glycine, valine and their dipeptides in L. mesenteroides, Fed. Proc. 24: 352.

    Google Scholar 

  • Yoder, O. C., Beamer, K. C., Cipolloni, Jr., P. B., and Shelton, D. C., 1965b, Kinetic studies of L-valine and glycyl-L-valine uptake by leuconostoc mesenteroides, Arch. Biochem. Biophys. 110: 336–340.

    CAS  Google Scholar 

  • Young, E. A., Bowen, D. O., and Diehl, J. F., 1964, Transport studies with peptides containing unnatural amino acids, Biochem. Biophys. Res. Commun. 14: 250–255.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Plenum Press, New York

About this chapter

Cite this chapter

Barak, Z., Gilvarg, C. (1975). Peptide Transport. In: Eisenberg, H., Katchalski-Katzir, E., Manson, L.A. (eds) Aharon Katzir Memorial Volume. Biomembranes, vol 7. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7668-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7668-2_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7670-5

  • Online ISBN: 978-1-4684-7668-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics