Skip to main content

Optimal Control

  • Chapter
  • 228 Accesses

Abstract

The derivations of the equations used in optimal control theory are given in this chapter. Numerical solutions are considered in Chapters 3 and 4. The simplest problem in the calculus of variations is discussed in Section 2.1. The Euler-Lagrange equations are derived using the classical calculus of variations (References 1–5) approach. The equations are then rederived using dynamic programming (References 6–8).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gelfand, I. M., and Fomin, S. V., Calculus of Variations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1963.

    Google Scholar 

  2. Kalman, R. E., The theory of optimal control and the calculus of variations, in Mathematical Optimization Techniques, edited by R. Bellman, University of California Press, Berkeley, California, pp. 309–331, 1963.

    Google Scholar 

  3. Courant, R., and Hilbert, D., Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953.

    Google Scholar 

  4. Miele, A., Introduction to the calculus of variations in one independent variable, in Theory of Optimum Aerodynamic Shapes, edited by A. Miele, Academic Press, New York, pp. 3–19, 1965.

    Google Scholar 

  5. Gottfried, B. S., and Weisman, J., Introduction to Optimization Theory, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  6. Bellman, R., Dynamic Programming, Princeton University Press, Princeton, New Jersey, 1957.

    MATH  Google Scholar 

  7. Dreyfus, S. E., Dynamic Programming and the Calculus of Variations, Academic Press, New York, 1965.

    MATH  Google Scholar 

  8. Bellman, R., and Kalaba, R., Dynamic Programming and Modern Control Theory, Academic Press, New York, 1965.

    Google Scholar 

  9. Pontryagin, L. S., et al., The Mathematical Theory of Optimal Processes, Wiley-Interscience, New York, 1962.

    MATH  Google Scholar 

  10. Lanczos, C, The Variational Principles of Mechanics, University of Toronto Press, Toronto, 1957.

    Google Scholar 

  11. Kalaba, R. E., A New Approach to Optimal Control and Filtering, University of Southern California Report USCEE-316, Los Angeles, California, 1968.

    Google Scholar 

  12. Bellman, R., and Kalaba, R., On the fundamental equations of invariant imbedding—I, Proceedings of the National Academy of Sciences, Vol. 47, pp. 336–338, 1961.

    Google Scholar 

  13. Kagiwada, H. and Kalaba, R., Derivation and Validation of an Initial-Value Method for Certain Nonlinear Two-Point Boundary-Value Problems, RM-5566-PR, The Rand Corporation, January, 1968.

    Google Scholar 

  14. Kagiwada, H., Kalaba, R., Schumitzky, A., and Sridhar, R., Invariant Imbedding and Sequential Interpolating Filters for Nonlinear Processes, RM-5507-PR, The Rand Corporation, November, 1967.

    Google Scholar 

  15. Kalaba, R., and Sridhar, R., Invariant Imbedding and the Simplest Problem in the Calculus of Variations, RM-5781-PR, The Rand Corporation, October, 1968.

    Google Scholar 

  16. Kagiwada, H., Kalaba, R., Schumitzky, A., and Sridhar, R., Cauchy and Fred-holm methods for Euler equations, Journal of Optimization Theory and Applications, Vol. 2, pp. 157–163, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  17. Bellman, R., Kagiwada, H., and Kalaba, R., Invariant imbedding and the numerical integration of boundary-value problems for unstable linear systems of ordinary differential equations, Communications of the ACM, Vol. 10, pp. 100–102, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  18. Bellman, R., and Kalaba, R., On the principle of invariant imbedding and propagation through inhomogeneous media, Proceedings of the National Academy of Sciences, Vol. 42, pp. 629–632, 1956.

    Article  MathSciNet  MATH  Google Scholar 

Suggested Reading

  • Axelband, E. I., An approximation technique for the optimal control of linear distributed parameter systems, IEEE Transactions on Automatic Control, Vol. 11, pp. 42–45, January, 1966.

    Article  MathSciNet  Google Scholar 

  • Balakrishnan, A. V., and Neustadt, L. W., editors, Computing Methods in Optimization Problems, Academic Press, New York, 1964.

    MATH  Google Scholar 

  • Larson, R. E., State Increment Dynamic Programming, American Elsevier Publishing Company, Inc., New York, 1968.

    MATH  Google Scholar 

  • Leondes, C. T., editor of the series in Control and Dynamic Systems, Advances in Theory and Applications, Academic Press, New York, Volumes 1–16, 1965–1980.

    Google Scholar 

  • Theil, H., Principles of Econometrics, John Wiley and Sons, Inc., New York, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Kalaba, R., Spingarn, K. (1982). Optimal Control. In: Control, Identification, and Input Optimization. Mathematical Concepts and Methods in Science and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7662-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7662-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7664-4

  • Online ISBN: 978-1-4684-7662-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics