Skip to main content

Substructure Measurements by Statistical Fluctuations in X-Ray Diffraction Intensity

  • Conference paper
Advances in X-Ray Analysis

Abstract

The substructures of a beta-quenched and a recrystallized form of high-purity uranium were measured by a method based on statistical fluctuations in X-ray diffraction intensity. For these measurements, Warren’s1 statistical equation for determining grain size was modified to make the equation applicable to materials with high absorption coefficients or moderate-to-large grain size (> 20 microns) or both, since many metals fall into this category, and to allow for defocusing of the X-ray beam which occurs as a natural consequence of the experiment.

The beta-quenched uranium was found to have numerous subgrains with a range of misorientation angles that was smaller and larger than the limits of the X-ray measurements (Ω = 10−4 to 10−2 steradians). The presence of the large subgrains was corroborated by optical microscopy. The presence of very small subgrains was corroborated by transmission electron microscopy which showed 0.1- to 1-micron subgrains relatively free of dislocations bounded by dense dislocation networks, and by micro Laue diffraction patterns (30-micron beam diameter) which showed partial rings similar to a powder pattern.

The recrystallized uranium had no misorientation within the grains greater than 5.5 × 10−3 steradians. In contrast to the beta-quenched case, no subgrains were found either by transmission electron microscopy (TEM) or micro Laue diffraction patterns. The TEM micrographs showed a uniform distribution of dislocation networks. Since no other substructural elements were observed, the dislocations are believed to be the cause of the misorientation within the grains for solid angles of less than 5 × 10−3 steradians.

These preliminary experiments show that the statistical method may be used in conjunction with transmission electron microscopy and micro Laue diffraction for the study of substructure. The statistical method gives quantitative data on “bulk” specimens that can be given a meaningful interpretation with the aid of the other techniques.

Presently a graduate student at the University of Illinois

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. E. Warren, “X-Ray Measurements of Grain Size,” J. Appl. Phys. 31: 2237–2239, 1960.

    Article  CAS  Google Scholar 

  2. C. S. Barrett, Structure of Metals, McGraw-Hill Book Company, Inc., New York, 1952, Chapter V.

    Google Scholar 

  3. A. Taylor, X-Ray Metallography, John Wiley & Sons, Inc., New York, 1961, Chapter 14.

    Google Scholar 

  4. P. B. Hirsch and J. N. Kellar, “ A Study of Cold-Worked Aluminum by an X-Ray Micro-Beam Technique. I. Measurement of Particle Volume and Misorientations,” Acta Cryst. 5: 162, 1952.

    Article  CAS  Google Scholar 

  5. P. B. Hirsch, “A Study of Cold-Worked Aluminum by an X-Ray Micro-Beam Technique. II. Measurement of Shapes of Spots,” Acta Cryst. 5: 168, 1952.

    Article  CAS  Google Scholar 

  6. P. B. Hirsch, “The Reflection and Transmission of X-Rays in Perfect Absorbing Crystals,” Acta Cryst. 5: 176, 1952.

    Article  CAS  Google Scholar 

  7. P. B. Hirsch, “Mosaic Structures,” in: B. Chalmers and R. King (eds.), Progress in Metal Physics, Vol. 6, Pergamon Press Ltd., London and New York, 1956, pp. 236–339.

    Google Scholar 

  8. C. S. Barrett, “Determining Recrystallization by a Diffractometer Technique,” in: J. B. Newkirk and J. H. Wernick (eds.), Direct Observations of Imperfections in Crystals, Interscience Publishers, Inc., New York, 1962, p. 395.

    Google Scholar 

  9. C. S. Barrett, “X-Ray Diffraction Studies at Low Temperatures,” in: W. M. Mueller, G. R. Mallett, and M. J. Fay (eds.), Advances in X-Ray Analysis, Vol. 5. Plenum Press, New York, 1961, p. 33.

    Google Scholar 

  10. E. F. Sturcken and J. W. Croach, “Predicting Physical Properties in Oriented Metals,” Trans. AIME 227: 934–940, 1963.

    CAS  Google Scholar 

  11. E. F. Sturcken and W. E. Gettys, Determination of Grain Size in Uranium from Statistical Fluctuations in X-Ray Diffraction Intensity, E. I. du Pont de Nemours and Co., DP-904, July 1964.

    Google Scholar 

  12. C. L. Angerman, “Transmission Electron Microscopy of Uranium,” J. Nucl. Mater. 9: 109–110, 1963.

    Article  CAS  Google Scholar 

  13. N. Crank and R. N. Thudium, Effects of Etching on Preferred Orientation Measurements, Hanford Atomic Products Operation, HW-74429, August 1962.

    Google Scholar 

  14. H. Margenau and G. M. Murphy, The Mathematics of Physics and Chemistry, D. Van Nostrand Company, Inc., New York, 1943, pp. 422–425.

    Google Scholar 

  15. H. Seeman, Ann. Physik 59: 455, 1919.

    Article  Google Scholar 

  16. H. Bohlin, Ann. Physik 61: 421, 1920.

    Article  CAS  Google Scholar 

  17. R. E. Ogilvie, Stress Measurement with the X-Ray Spectrometer, M.S. Thesis, Department of Metallurgy, MIT, 1952.

    Google Scholar 

  18. M. Schwartz, J. Appl. Phys. 26: 1507, 1955.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gavin R. Mallett Marie J. Fay William M. Mueller

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Sturcken, E.F., Gettys, W.E., Bohn, E.M. (1966). Substructure Measurements by Statistical Fluctuations in X-Ray Diffraction Intensity. In: Mallett, G.R., Fay, M.J., Mueller, W.M. (eds) Advances in X-Ray Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7633-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7633-0_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7635-4

  • Online ISBN: 978-1-4684-7633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics