Skip to main content

X-Ray Study of Wire-Drawn Niobium and Tantalum

  • Conference paper
Book cover Advances in X-Ray Analysis
  • 334 Accesses

Abstract

Deformation, introduced into niobium and tantalum specimens by wire drawing at room temperature, produced changes in the shape and position of X-ray diffraction peaks. The resultant peak profiles and locations of all available peaks were recorded using the Debye—Scherrer geometry on a modified diffractometer with crystal monochromated Cu K α1 radiation. The amount of deformation in the surface layers of both metals was’found to saturate essentially after only 20% reduction in area. The measured decrease in the lattice parameters of either material was attributed to a residual surface stress; the average value for the deformed saturated state for both tantalum and niobium wires corresponded to an equivalent longitudinal tensile stress of 35 ± 5 kg/mm2. Integral breadth measurements revealed approximately equal X-ray particle sizes in the ‹100› and ‹110› directions; the minimum particle size for the microstructures of both metals was around 200 Å and occurred after the first few draws.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Latrobe Steel Company, Bulletin 100, Tech Topics: Stainless Steels, Latrobe, Pennsylvania 1961.

    Google Scholar 

  2. Metals Handbook,Vol. 1,8th ed., American Society for Metals, Metals Park, Ohio, 1961, pp. 153, 1202, 1222, 1225.

    Google Scholar 

  3. W. O. Everling, “Super-High Strength Wire, A Component of Metallic Composites,” in: Proc. 6th Sagamore Ordnance Matls. Res. Conf., Composite Materials and Composite Structures, Racquette Lake, N.Y., 1959.

    Google Scholar 

  4. J. D. Embury and R. M. Fisher, “The Structure and Properties of Drawn Pearlite,” Acta Met. 14: 147–159, 1966.

    Article  CAS  Google Scholar 

  5. W. M. Baldwin, Jr., “Residual Stress in Metals, ”Proceedings of the American Society for Testing Materials 49: 1–45, 1949.

    Google Scholar 

  6. T. A. Trozera, “On the Nonhomogeneous Work for Wire Drawing,” Trans. ASME 57: 309–323, 1964.

    Google Scholar 

  7. D. I. Bolef, “Elastic Constants of Single Crystals of the Body-Centered Cubic Transition Elements V, Nb, and Ta,” J. Appl. Phys. 32: 100–105, 1961.

    Article  CAS  Google Scholar 

  8. G. B. Greenough, “Quantitative X-Ray Diffraction Observations in Strained Metal Aggregates,” Progr. Metal Phys. 3: 176–219, 1952.

    Article  CAS  Google Scholar 

  9. H. M. Otte, “Lattice-Parameter Determinations with an X-Ray Spectrogoniometer by the Debye-Scherrer Method and the Effect of Specimen Condition,” J. Appl. Phys. 32: 1536–1346, 1961.

    Article  CAS  Google Scholar 

  10. J. B. Nelson and D. P. Riley, “An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit Cell Dimensions of Crystals,” Proc. Phys. Soc. (London) 57: 160177, 1945.

    Google Scholar 

  11. B. E. Warren, “X-Ray Studies of Deformed Metals,” Progr. Metal. Phys. 8: 147–202, 1958.

    Article  Google Scholar 

  12. C. N. J. Wagner, A. S. Tetelman, and H. M. Otte, “Diffraction from Layer Faults in bcc and fcc Structure,” J. Appl. Phys. 33: 3080–3086, 1962.

    Article  CAS  Google Scholar 

  13. C. N. J. Wagner, “Analysis of the Broadening and Changes in Position of X-ray Powder Pattern Peaks,” in: J. B. Cohen and J. E. Hilliard (eds.), Local Atomic Arrangements Studied by X-Ray Diffraction, Gordon and Breach, New York, 1965, Chapt. 6.

    Google Scholar 

  14. A. Taylor, X-Ray Metallography, John Wiley & Sons, Inc., New York, 1961, pp. 605, 692, 788.

    Google Scholar 

  15. D. O. Welch and H. M. Otte, “The Effect of Cold-Work on the X-Ray Diffraction Pattern of a Copper-Silicon-Manganese Alloy,” in: W. M. Mueller and M. J. Fay (eds.), Advances in X-Ray Analysis, Vol. 6, 1963, p. 96–120.

    Google Scholar 

  16. T. W. Barbee and R. A. Huggins, “Dislocation Structures in Deformed and Recovered Tantalum,” J. Less-Common Metals 8: 306–319, 1965.

    Article  CAS  Google Scholar 

  17. L. I. van Tome and G. Thomas, “Yielding and Plastic Flow in Niobium,” Acta Met. 11: 88 1893, 1963.

    Google Scholar 

  18. A. J. Opinsky, J. L. Orehotsky and C. W. W. Hoffman, “X-Ray Diffraction Analysis of Crystallite Size and Lattice Strain in Tungsten Wire,” J. Appl. Phys. 33: 708–712, 1962.

    Article  CAS  Google Scholar 

  19. E. N. Aqua and C. N. J. Wagner, “X-Ray Diffraction Study of Deformation by Filing in bcc Refractory Metals,” Phil. Mag. 9: 565–589, 1964.

    Article  Google Scholar 

  20. H. M. Otte and J. J. Hren, Experimental Mechanics 6: 177–193, 1966.

    Article  Google Scholar 

  21. A. L. Mincher and W. F. Sheely, “Effect of Structure and Purity on the Mechanical Properties of Niobium,” Trans AIME 221: 19–25, 1961.

    CAS  Google Scholar 

  22. E. S. Bartlett, D. N. Williams, H. R. Ogden, R. I. Jaffee, and E. F. Bradley, “High Temperature Solid-Solution-Strengthened Columbium Alloys,” Trans. Met. Soc. AIME 227: 459–467, 1963.

    CAS  Google Scholar 

  23. M. A. Adams, A C. Roberts, and R. E. Smallman, “Yield and Fracture in Polycrystalline Niobium,” Acta Met. 8: 328–337, 1960.

    Article  CAS  Google Scholar 

  24. M. Schussler and J. S. Brunhouse, Jr., “Mechanical Properties of Tantalum Metal Consolidated by Melting,” Trans. AIME 218: 893–900, 1960.

    CAS  Google Scholar 

  25. C. S. Tedmon and D. P. Ferris, “The Dependence of Yield Stress on Grain Size for Tantalum and a 10% W-90% Ta Alloy,” Trans. AIME 224: 1079–1080, 1962.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gavin R. Mallett Marie J. Fay William M. Mueller

Rights and permissions

Reprints and permissions

Copyright information

© 1966 Springer Science+Business Media New York

About this paper

Cite this paper

Adler, R.P.I., Otte, H.M. (1966). X-Ray Study of Wire-Drawn Niobium and Tantalum. In: Mallett, G.R., Fay, M.J., Mueller, W.M. (eds) Advances in X-Ray Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7633-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7633-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7635-4

  • Online ISBN: 978-1-4684-7633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics