Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 58))

Abstract

Early chemical events (between 10−15 and 10−6 seconds) as they relate to the evolution of damage in radiation biology have been described in terms of a theoretical model. DNA is the target of concern in this model, and both indirect and direct effects have been explicitly accounted for in evaluating yields of strand breaks. In the indirect-effect considerations, a quantitative estimation of the time decay of water radical species—beginning with their production at 10−14 seconds and leading to the interactions of hydroxyl radicals with DNA—has been a major focus. A method based on stopping-power theory and the Bragg rule has been described to account for direct effects. However, no attempt is made to follow all the chemical events that take place between the creation of initial (10−6 seconds) damage and the observable strand break yields. The theoretical calculations refer to a simple aqueous system containing DNA molecules and scavenger (Tris). The theoretical results of strand break yields by different heavy charged particles are in good agreement with experimental cellular data under conditions of minimal enzymatic repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. D. Cooper and R. W. Wood, eds. Physical Mechanisms in Radiation Biology. lèchnical Information Center, Office of Information Services, United States Atomic Energy Commission (1974).

    Google Scholar 

  2. M. Zaider, D. J. Brenner, and W. E. Wilson. The Application of Yack Calculations to Radiobiology. I. Monte Carlo Simulation of Proton ‘Yacks. Radiat. Res. 95: 231–247 (1983).

    Article  CAS  Google Scholar 

  3. C. D. Jonah and J. R. Miller. Yield and Decay of the OH Radical from 200 ps to 3 ns. J. Phys. Chem. 81: 1974–1976 (1977).

    Article  CAS  Google Scholar 

  4. C. D. Jonah, M. S. Matheson, J. R. Miller, and E. J. Hart. Yield and Decay of the Hydrated Electron from 100 ps to 3 ns. J. Phys. Chem. 80: 1267–1270 (1976).

    Article  CAS  Google Scholar 

  5. D. J. Brenner and M. Zaider. Stochastic and Deterministic Treatments of the Time Decay of Species Created by Heavy-Charged Particle Interactions. Radiat. Prot Dosimetry 13: 127 (1985).

    CAS  Google Scholar 

  6. A. Chatterjee and J. L. Magee. Radiation Chemistry of Heavy-Particle Yacks. 2. Fricke Dosimeter System. J. Phys. Chem. 84: 3537–3543 (1980).

    Article  CAS  Google Scholar 

  7. J. E. Turner, J. L. Magee, R. N. Hamm, A. Chatterjee, H. A. Wright, and R. H. Ritchie. Early Events in Irradiated Water. In Seventh Symposium on Microdosimetry, Oxford, U.K, J. Booz, H. G. Ebert, and H. D. Hartfield, eds., p. 507. Commission of the European Communities, Hardwood, London (1981).

    Google Scholar 

  8. R. H. Ritchie, R. N. Hamm, J. E. Tùrner, and H. A. Wright. The Interaction of Swift Electrons with Liquid Water. In Sixth Symposium on Microdosimetry, Brussels, Belgium, J. Booz and H. G. Ebert, eds., pp. 345–354. Commission of the European Communities, Hardwood, London (1978).

    Google Scholar 

  9. A. Mozumder and J. L. Magee. The Early Events of Radiation Chemistry. Int. J. Radiat. Phys. Chem. 7: 83 (1975).

    Article  CAS  Google Scholar 

  10. H. A. Grunder, W. D. Hartsough, and E. J. Lofgren. Acceleration of Heavy Ions at the Bevatron. Science 174: 1128–1129 (1971).

    Article  PubMed  CAS  Google Scholar 

  11. A. Chatterjee. Interaction of Ionizing Radiation with Matter. In A Textbook of Modern Radiation Chemistry, Farhataziz and M.A.J. Rodgers, eds., pp. 1–28. Verlag Chemie Internationa (1986).

    Google Scholar 

  12. C. A. Tobias, E. A. Blakely, P. Y. Chang, L. Lommel, and R. Roots. Response of Sensitive Human Ataxia and Resistant Tl Cell Lines to Accelerated Heavy Ions. Br. J. Cancer 49, Suppl. VI: 175–185 (1984).

    Google Scholar 

  13. A. Chatterjee, H. D. Maccabee, and C. A. Tbbias. Radial Cutoff LET and Radial Cutoff Dose Calculations for Heavy Charged Particles in Water. Radiat. Res. 54: 479–494 (1973).

    Article  PubMed  CAS  Google Scholar 

  14. A. Chatterjee and H. J. Schaefer. Microdosimetric Structure of Heavy Ion Tracks in Tissue. Radiat. Environ. Biophys. 13: 215–227 (1976).

    Article  PubMed  CAS  Google Scholar 

  15. M. N. Varma and J. W. Baum. Energy Deposition in Nanometer Regions by 377 MeV/Nucleon 20 Ne Ions. Radiat. Res. 81: 355–363 (1980).

    Article  CAS  Google Scholar 

  16. J. L. Magee and A. Chatterjee. Radiation Chemistry of Heavy Particle Tracks. 1. General Considerations. J. Phys. Chem. 84: 3529–3536 (1980).

    Article  CAS  Google Scholar 

  17. J. L. Magee and A. Chatterjee. The Track Reactions of Radiation Chemistry. In Kinetics of Nonhomogeneous Processes, Gordon R. Freeman, ed., pp. 171–214. John Wiley and Sons, Inc. (1986).

    Google Scholar 

  18. F. Hutchinson. Chemical Changes Induced in DNA by Ionizing Radiation. Progress in Nucleic Acid Research and Molecular Biology 32: 115–154 (1985).

    Article  PubMed  CAS  Google Scholar 

  19. J. F. Ward and M. M. Urist. y-Irradiation of Aqueous Solutions of Polynucleotides. Int. J. Radiat. Biol. 12: 209 (1967).

    Article  CAS  Google Scholar 

  20. A. Chatterjee, P. Koehl, and J. L. Magee. Theoretical Consideration of the Chemical Pathways for Radiation-Induced Strand Breaks. Adv. Space Res. 6(11): 97–105 (1986).

    CAS  Google Scholar 

  21. J. Türner, J. L. Magee, H. A. Wright, A. Chatterjee, R. N. Hamm, and R. H. Ritchie. Physical and Chemical Development of Electron Tracks in Liquid Water. Radiat. Res. 96: 437–449 (1983).

    Article  Google Scholar 

  22. H. A. Wright, R. N. Hamm, J. E. TUrner, J. L. Magee, and A. Chatterjee. Physical and Chemical Structure of Charged Particle Tracks in Liquid Water. In Proc. Third Workshop on Heavy Charged Particles in Biology and Medicine, GSI, Darmstadt, Germany, Bi, (1987).

    Google Scholar 

  23. M. V. Smoluchowski. Drei Vortrage über Diffusion, Brownsche Molekular-bewegung and Koagulation von Kolloidteilchen. Physik Zeitschr. 17: 557 (1916).

    Google Scholar 

  24. E Hutchinson and J. Arena. Destruction of the Activity of Deoxyribonucleic Acid in Irradiated Cells. Radiat. Res. 13: 137 (1960).

    Article  PubMed  CAS  Google Scholar 

  25. H. B. Michaels and J. W Hunt. Reactions of the Hydroxyl Radical with Polynucleotides. Radiat. Res. 56: 57–70 (1973).

    Article  PubMed  CAS  Google Scholar 

  26. S. Arnott and D.W.L. Hukins. Optimized Parameters for A-DNA and B-DNA. Biochem. Biophys. Res. Comm. 47: 1504–1509 (1972).

    Article  PubMed  CAS  Google Scholar 

  27. W. R. Holley, A. Chatterjee, and J. L. Magee. Production of DNA Strand Breaks by Direct Effects of Heavy Charged Particles. Radiat. Res. 121: 161–168 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. T. Inagaki, R. N. Hamm, E. T. Arakawa, and L. R. Painter. Optical and Dielectric Properties of DNA in the Extreme Ultraviolet. J. Chem. Phys. 61: 4246–4250 (1974).

    Article  CAS  Google Scholar 

  29. A. Mozumder. Charged Particle Tracks and their Structure. In Advances in Radiation Chemistry, M. Burton and J. L. Magee, eds., 1: 1–102. Wiley-Interscience, New York (1969).

    Google Scholar 

  30. J. E. Minter, R. N. Hamm, H. A. Wright, R. H. Ritchie, J. L. Magee, A. Chatterjee, and Wesley E. Botch. Studies to Link the Basic Radiation Physics and Chemistry of Liquid Water. Radiat. Phys. Chem. 32 (3): 503–510 (1988).

    Google Scholar 

  31. A. Chatterjee and W. Holley. Energetic Electron ‘Racks and DNA Strand Breaks. Nucl. Tracks and Radiat. Meas. 16 (2/3): 127–133 (1989).

    Article  CAS  Google Scholar 

  32. R. Roots, A. Chatterjee, P. Chang, L. Lommel and E. A. Blakely. Characterization of Hydroxyl Radical Induced Damage after Sparsely and Densely Ionizing Radiation. Int. J. Radiat. Biol. 47: 157–166 (1985).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Chatterjee, A., Holley, W.R. (1991). Early Chemical Events and Initial DNA Damage. In: Glass, W.A., Varma, M.N. (eds) Physical and Chemical Mechanisms in Molecular Radiation Biology. Basic Life Sciences, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7627-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7627-9_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7629-3

  • Online ISBN: 978-1-4684-7627-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics