Skip to main content

Energy Transfer, Charge Transfer, and Proton Transfer in Molecular Composite Systems

  • Chapter
Physical and Chemical Mechanisms in Molecular Radiation Biology

Part of the book series: Basic Life Sciences ((BLSC,volume 58))

Abstract

Models for the fundamental mechanisms of excitation energy transfer, including cases involving singlet oxygen states, twisting-intramolecular-charge-transfer (TICT) states, and intramolecular proton transfer, are described in terms of elementary concepts and energy diagrams. Three limiting cases of energy transfer are distinguished, Davydov free excitons (Simpson and Peterson strong coupling) and localized excitons (weak coupling), and the Förster mechanism of vibrational-relaxation energy transfer. The prominent rôle of the singlet molecular oxygen states is described, together with the rôle of simultaneous transitions for molecular oxygen pairs. The origin of sudden polarization via the TICT-state potential is discussed and the generality of this phenomenon emphasized. The intramolecular proton-transfer phenomenon is outlined, and its role in molecular excitation transient phenomena is described. The complex interaction of all of these excitation mechanisms in determining photochemical and radiation chemical pathways is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Kasha. Relation Between Exciton Bands and Conduction Bands in Molecular Lamellar Systems. Rev. Modern Phys., 31: 162 (1959).

    Article  CAS  Google Scholar 

  2. J. I. Frenkel. On the Absorption of Light and the Trapping of Electrons and Positive Holes in Crystalline Dielectrics. Phys. Rev. 37: 17, 1276 (1931);

    Article  Google Scholar 

  3. J. I. Frenkel. Physik Z. Sowjetunion, 9: 158 (1936).

    CAS  Google Scholar 

  4. J. Franck and E. Teller. Migration and Photochemical Action of Excitation Energy in Crystals. J. Chem. Phys. 6: 861 (1938).

    Article  CAS  Google Scholar 

  5. A. S. Davydov. Theory of Molecular Excitons (transi. by M. Kasha and M. Oppenheimer, Jr.), McGraw-Hill Book Co., Inc., New York (1962), 174 pp.

    Google Scholar 

  6. R. S. Knox. Theory of Excitons, Academic Press, New York (1963), 207 pp.

    Google Scholar 

  7. E. G. McRae and M. Kasha. (Note) The Enhancement of Phosphorescence Ability Upon Aggregation of Dye Molecules. J. Chem. Phys. 28: 721 (1958).

    Article  CAS  Google Scholar 

  8. E. G. McRae and M. Kasha. The Molecular Exciton Model. In Physical Processes in Radiation Biology (Augenstein, Rosenberg and Mason, eds.), p. 23–42. Academic Press, New York (1964).

    Google Scholar 

  9. M. Kasha, H. R. Rawls and M. A. El-Bayoumi. The Exciton Model in Molecular Spectroscopy. Pure and Appl. Chem. 11: 371 (1965).

    Article  CAS  Google Scholar 

  10. M. Kasha. Molecular Excitons in Small Aggregates. In Spectroscopy of the Excited State (B. diBartolo, ed.), pp. 337–363. Plenum Press, New York (1976).

    Google Scholar 

  11. R. M. Hochstrasser and M. Kasha. Application of the Exciton Model to Molecular Lamellar Systems. Photochem. Photobiol. 3: 317 (1964).

    Article  CAS  Google Scholar 

  12. D. S. McClure. Energy Transfer in Molecular Crystals and in Double Molecules. Can. J. Chem. 36: 59 (1958).

    Article  CAS  Google Scholar 

  13. E. E. Jelley. Spectral Absorption and Fluorescence of Dyes in the Molecular State. Nature 138: 1009 (1936);

    Article  CAS  Google Scholar 

  14. E. E. Jelley. Absorption Bands in the Spectrum of 4c-Isocyanine Dyes. Nature 139: 378 (1937);

    Article  Google Scholar 

  15. E. E. Jelley. Molecular, Nematic and Crystal States of 1,1-Diethyl-Ii-Cyanine Chloride. Nature 139: 631 (1937).

    Article  CAS  Google Scholar 

  16. G. Scheibe et al. Über die Veränderlichkeit des Absorptionsspektrums einiger Sensibilisierungsfarbstoffe und deren Ursache, Z. angew. Chem. 49: 563 (1936);

    CAS  Google Scholar 

  17. G. Scheibe et al. Über die Veränderlichkeit des Absorptionsspektren in Lösung und die van der Waalsschen Kräfte als ihre Ursache, Z. angew. Chem. 50: 51 (1937).

    Google Scholar 

  18. G. Scheibe et al. Über die Veränderlichkeit des Absorptionsspektren in Lösung und die Nebenvalenzen als ihre Ursache, Z. angew. Chem. 50: 212 (1937).

    Article  CAS  Google Scholar 

  19. S. E. Sheppard. The Effects of Environment and Aggregation on the Absorption Spectra of Dyes, Rev. Mod. Phys. 14: 303 (1942).

    Article  CAS  Google Scholar 

  20. W. T. Simpson and D. L. Peterson. Coupling Strength for Resonance Force Transfer of Electronic Energy in Van der Waals Solids, J. Chem. Phys. 26: 588 (1957).

    Article  CAS  Google Scholar 

  21. Th. Förster. Excitation Transfer. In Comparative Effects of Radiation (M. Burton, J. S. Kirby-Smith and J. L. Magee, eds.), p. 300–341. John Wiley and Sons, Inc., New York, (1960).

    Google Scholar 

  22. Th. Förster. Delocalized Excitation and Excitation Transfer. In Modern Quantum Chemistry (O. Sinanoglu, ed.), Vol. III, p. 93–137. Academic Press, New York (1965).

    Google Scholar 

  23. M. Kasha. Energy Transfer Mechanisms and the Molecular Exciton Model for Molecular Aggregates. Radiation Res. 20: 53, 55 (1963).

    Article  PubMed  CAS  Google Scholar 

  24. Th. Förster. Zwischenmolekulare Energiewanderung, Naturwiss. 33: 166–175 (1946).

    Article  Google Scholar 

  25. Th. Förster. Zwischenmolekulare Energiewanderung und Fluorescenz, Ann. Physik 2: 55–73 (1948).

    Article  Google Scholar 

  26. P. DeTar and M. Kasha. Unpublished Work, Florida State University, Tallahassee, Florida.

    Google Scholar 

  27. W. Moffitt. The Optical Rotatory Dispersion of Simple Polypeptides. II, Proc. Nat. Acad. Sci. (US), 42: 736 (1956).

    Article  CAS  Google Scholar 

  28. W. Moffitt. Optical Rotatory Dispersion of Helical Polymers, J. Chem. Phys. 25: 467 (1956).

    Article  CAS  Google Scholar 

  29. W. B. Gratzer, G. M. Holzwarth and P. Doty. Polarization of the Ultraviolet Absorption Bands in Alpha-Helical Polypeptides. Proc. Nat. Acad. Sci. (USA) 47: 1785 (1961).

    Article  CAS  Google Scholar 

  30. G. Holzwarth, W. B. Gratzer and P. Doty. The Optical Activity of Polypeptides in the Far Ultraviolet. J. Am. Chem. Soc. 84: 3194 (1962).

    Article  CAS  Google Scholar 

  31. P. Doty, J. Marmur, J. Eigner and C. Schildkraut. Strand Separation and Specific Recombination in Deoxyribonucleic Acids: Physical Chemical Studies. Proc. Nat. Acad. Sci. (USA) 46: 461 (1960).

    Article  CAS  Google Scholar 

  32. W. Rhodes. Hyperchromism and Other Spectral Properties of Helical Polynucleotides, J. Am. Chem. Soc. 83: 3609 (1961).

    Article  CAS  Google Scholar 

  33. M. Kasha, M. A. El-Bayoumi and W. Rhodes. Excited States of Nitrogen Base-Pairs and Polynucleotides. J. Chim. Phys. 58: 816 (1961).

    Google Scholar 

  34. A. Rich and M. Kasha. The n - n* Transition in Nucleic Acids and Polynucleotides. J. Am. Chem. Soc. 82: 6197 (1960).

    Article  CAS  Google Scholar 

  35. M. Kasha. The Nature and Significance of n -. n* Transitions. In Light and Life (W. D. McElroy and B. Glass, eds.), pp. 31–64. Johns Hopkins University Press, Baltimore, Maryland (1961).

    Google Scholar 

  36. R. M. Hochstrasser and M. Kasha. Application of the Exciton Model to Molecular Lamellar Systems. Photochem. Photobiol. 3: 317 (1964).

    Article  CAS  Google Scholar 

  37. S. S. Brody and M. Brody. Spectral Characteristics of Aggregated Chlorophyll and Its Possible Role in Photosynthesis. Nature 189: 547 (1961).

    Article  CAS  Google Scholar 

  38. S. S. Brody and M. Brody. Fluorescence Properties of Aggregated Chlorophyll In Vivo and In Vitro. Trans. Faraday Soc. 58: 416 (1962).

    Article  CAS  Google Scholar 

  39. K. Maruyama and A. Osuka. A Chemical Approach Toward Photosynthetic Reaction Center, Pure and Appl. Chem. 62: 1511–1520 (1990).

    Article  CAS  Google Scholar 

  40. G. N. Lewis. The Magnetochemical Theory, J. Am. Chem. Soc. 38:762 (1916); Chem. Rev. 1: 233 (1924).

    Article  Google Scholar 

  41. R. S. Mulliken. Interpretation of the Atmospheric Oxygen Bands; Electronic Levels of the Oxygen Molecule, Nature 122: 505 (1928).

    Article  CAS  Google Scholar 

  42. L. Herzberg and G. Herzberg. Fine Structure of the Infrared Atmospheric Oxygen Bands, Astrophys. J. 105: 353 (1947).

    Article  CAS  Google Scholar 

  43. H. D. Babcock and L. Herzberg. Fine Structure of the Red System of Atmospheric Oxygen Bands, Astrophys. J. 108: 167 (1948).

    Article  CAS  Google Scholar 

  44. A. U. Khan and M. Kasha. The Red Chemiluminescence of Molecular Oxygen in Aqueous Solution. J. Chem. Phys. 39: 2105 (1963).

    Article  CAS  Google Scholar 

  45. A. U. Khan and M. Kasha. Rotational Structure in the Chemiluminescence Spectrum of Molecular Oxygen in Aqueous Systems. Nature 204: 241 (1964).

    Article  Google Scholar 

  46. A. U. Khan and M. Kasha. Chemiluminescence Arising from Simultaneous Transitions in Pairs of Singlet Oxygen Molecules. J. Am. Chem. Soc. 92: 3293 (1970).

    Article  CAS  Google Scholar 

  47. E.g., A. Paul Schaap (ed.), Singlet Molecular Oxygen, 399 pp. Dowden, Hutchinson and Ross, Inc., Stroudsberg, Pennsylvania (1976).

    Google Scholar 

  48. H. H. Wasserman and R. W. Murray (eds.), Singlet Oxygen, 684 pp. Academic Press, New York (1979).

    Google Scholar 

  49. A. A. Frimer (ed.), Singlet 0 2, Vols. I-IV. CRC Press, Inc., Boca Raton, Florida (1985).

    Google Scholar 

  50. A. U. Khan and M. Kasha. (Note) Physical Theory of Chemiluminescence in Systems Evolving Molecular Oxygen, J. Am. Chem. Soc. 88: 1574 (1966).

    Article  CAS  Google Scholar 

  51. M. Kasha and D. Brabham. Singlet Oxygen Electronic Structure and Photosensitization. In Singlet Oxygen (H. Wasserman and R. W. Murray, eds.), p. 1–33. Academic Press, New York (1979).

    Google Scholar 

  52. T. Dougherty. Activated Dyes as Antitumor Agents, J. Nat. Cancer Inst. 52: 1333 (1974).

    PubMed  CAS  Google Scholar 

  53. T. Dougherty, C. J. Gomer and K. R. Weishaupt. Energetics and Efficiency of Photoinactivation of Murine Tumor Cells Containing Hemotoporphyrin, Cancer Res. 36: 2330 (1976).

    PubMed  CAS  Google Scholar 

  54. T. Dougherty, J. E. Kaufman, A. Goldfarb, K. R. Weishaupt, D. Boyle and A. Mittleman. Photoradiation Therapy for the Treatment of Malignant Tumors, Cancer Res. 38: 2628 (1978).

    PubMed  CAS  Google Scholar 

  55. A. U. Khan and M. Kasha. Direct Spectroscopic Observation of Singlet Oxygen Emission at 1268 nm Excited by Sensitizing Dyes of Biological Interest in Liquid Solution. Proc. Nat. Acad. Sci. (USA), 76: 6047 (1979).

    Article  CAS  Google Scholar 

  56. R. S. Mulliken and W. B. Person. Molecular Complexes, Wiley Interscience, New York (1969), 498 pp.

    Google Scholar 

  57. W. Rettig. Charge Separation in Excited States of Decoupled Systems–TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Processes of Vision and Photosynthesis, Angew. Chem. Int. Ed. 25: 971–988 (1986).

    Article  Google Scholar 

  58. E. Lippert, W. Rettig, V. Bonaéié-Kouteckÿ, F. Heisel and J. A. Miehé. Photophysics of Internal Twisting. In Advances in Chemical Physics (I. Prigogine and S. A. Rice, eds.), p. 1–173. WileyInterscience, New York (1987).

    Google Scholar 

  59. V. Bonaéié-Kouteckÿ, J. Koutecky and J. Michl. Neutral and Charged Biradicals, Zwitterions, Tunnels in Si, and Proton Translocation: Their Role in Photochemistry, Photophysics, and Vision, Angew. Chem. Int. Ed. 26: 170–189 (1987).

    Article  Google Scholar 

  60. Z. R. Grabowski, K. Rotkiewicz, A. Siemiarczuk, D. J. Cowley and W. Baumann. Twisted Intra-molecular Charge Transfer States (TICT). A New Class of Excited States with a Full Charge Separation, Nouv. J. Chim. 3: 443–454 (1979).

    CAS  Google Scholar 

  61. J. N. Murrell. The Electronic Spectrum of Aromatic Molecules. VI: The Mesomeric Effect, Proc. Phys. Soc. (London) A68: 969–975 (1955).

    Article  Google Scholar 

  62. Cf. M. Godfrey and J. N. Murrell. Substituent Effects on the Electronic Spectra of Aromatic Hydrocarbons. III. An Analysis of the Spectra of Amino-and Nitrobenzenes in Terms of the Localized-Orbital Model, Proc. Roy. Soc. A278: 57, 71 (1969).

    Google Scholar 

  63. L. Salem and C. Rowland. The Electronic Properties of Diradicals, Angew. Chem. Int. Ed. 11: 92–111 (1972).

    Article  CAS  Google Scholar 

  64. J. Heldt and M. Kasha. Dialectric Medium Interactions in Proton-Transfer and Charge-Transfer Molecular Electronic Excitation. J. Molec. Liquids 41: 305 (1989).

    Article  CAS  Google Scholar 

  65. P. F. Barbara and H. P. Trommsdorff (eds.). Spectroscopy and Dynamics of Elementary Proton Transfer in Polyatomic Systems Chem. Phys. Special Issue 136:153–160 (1989).

    Google Scholar 

  66. D. McMorrow and M. Kasha. Intramolecular Excited-State Proton Transfer of 3-Hydroxyflavone. H-Bonding Solvent Perturbations. J. Phys. Chem. 88: 2235 (1984).

    Article  CAS  Google Scholar 

  67. P. J. Sengupta and M. Kasha. Excited State Proton-Transfer Spectroscopy of 3-Hydroxyflavone and Quercetin. Chem. Phys. Lett. 68: 382 (1979).

    Article  CAS  Google Scholar 

  68. W. E. Brewer, S. L. Studer and P.-T. Chou. Temperature-Dependent Study of the Ground-State Reverse Proton Transfer of 3-Hydroxyflavone, Chem. Phys. Lett. 158: 345–350 (1989).

    Article  CAS  Google Scholar 

  69. W. E. Brewer, S. L. Studer, M. Standiford and P.-T. Chou. Dynamics of the Triplet State and the Reverse Proton Transfer of 3-Hydroxyflavone, J. Phys. Chem. 93: 6088 (1989).

    Article  CAS  Google Scholar 

  70. M. L. Martinez, S. L. Studer and P. T. Chou. Direct Evidence of the Triplet State Resulting in the Slow Reverse Proton-Transfer Reaction of 3-Hydroxyflavone, J. Am. Chem. Soc. 112: 2427–2429 (1990).

    Article  CAS  Google Scholar 

  71. M. Kasha. Proton-Transfer Spectroscopy. Perturbation of the Tautomerization Potential. J. Chem. Soc. Faraday Transactions, II 82: 2379 (1986).

    Google Scholar 

  72. J. Heldt, D. Gormin and M. Kasha. A Comparative Picosecond Spectroscopic Study of the Competitive Triple Fluorescence of Aminosalicylates and Benzanilides. Chem. Phys. 136: 321 (1989).

    Article  CAS  Google Scholar 

  73. P.-T. Chou, D. McMorrow, T. J. Aartsma and M. Kasha. The Proton-Transfer Laser. Gain Spectrum and Amplification of Spontaneous Emission of 3-Hydroxyflavone. J. Phys. Chem. 88: 4596 (1984).

    Article  CAS  Google Scholar 

  74. D. Parthenopoulos and M. Kasha. Coherent Pulse and Environmental Characteristics of the Intermolecular Proton-Transfer Lasers Based on 3-Hydroxyflavone and Fisetin. Chem. Phys. Lett. 146: 77 (1988).

    Article  CAS  Google Scholar 

  75. A. U. Khan and M. Kasha. Mechanism of Four-Level Laser Action in Solution Excimer and Excited State Proton-Transfer Cases. Proc. Nat. Acad. Sci. (US) 80: 1767 (1983).

    Article  CAS  Google Scholar 

  76. P.-T. Chou and T. J. Aartsma. The Proton-Transfer Laser. Dual Wavelength Lasing Action in Binary Dye Mixtures Involving 3-Hydroxyflavone, J. Phys. Chem. 90: 721–723 (1986).

    Article  CAS  Google Scholar 

  77. T. Dzugan, J. Schmidt and T. J. Aartsma. On the Ground-State Tautomerization of 3-Hydroxyflavone, Chem. Phys. Lett. 127: 336 (1986).

    Article  CAS  Google Scholar 

  78. A. Mordzinski and H. K. Grellman. Excited-State Proton-Transfer Reactions in 2-(2-Hydroxyphenyl)benzoxazole. Role of Triplet States, J. Phys. Chem. 90: 5503–5506 (1986).

    Article  CAS  Google Scholar 

  79. D. Gormin, J. Heldt and M. Kasha. Molecular Phosphorescence Enhancement via Tunneling Through Proton-Transfer Potentials. J. Phys. Chem. 94: 1185 (1990).

    Article  CAS  Google Scholar 

  80. M. Itoh, Y. Tanimoto and K Tokumura. Transient Absorption Study of the Intramolecular Excited-State and Ground-State Proton Transfer in 3-Hydroxyflavone and 3-Hydroxychromone, J. Am. Chem. Soc. 105: 3339–3340 (1983).

    Article  CAS  Google Scholar 

  81. M. Itoh and Y. Fujiwara. Two-Step Laser Excitation Fluorescence Study of the Ground-and Excited-State Proton Transfer in 3-Hydroxyflavone and 3-Hydroxychromone, J. Phys. Chem. 87: 4558–4560 (1983)

    Article  CAS  Google Scholar 

  82. M. Itoh and Y. Fujiwara. The Ground State Tautomer in the Excited State Relaxation Process of 3-Hydroxyflavone at Room Temperature, Chem. Phys. Lett. 130: 365–367 (1986).

    Article  CAS  Google Scholar 

  83. G.-Q. Tang, J. MacInnis and M. Kasha. Proton-Transfer Spectroscopy of Benzanilide. The AmideImidole Tautomerism. J. Am. Chem. Soc. 109: 2531 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kasha, M. (1991). Energy Transfer, Charge Transfer, and Proton Transfer in Molecular Composite Systems. In: Glass, W.A., Varma, M.N. (eds) Physical and Chemical Mechanisms in Molecular Radiation Biology. Basic Life Sciences, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7627-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7627-9_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7629-3

  • Online ISBN: 978-1-4684-7627-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics