Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 58))

Abstract

This paper concerns basic radiation interaction processes in dense fluids and interphase studies aimed at interfacing knowledge on radiation interaction processes in low-pressure gases and knowledge on such processes in liquids. Microscopic and macroscopic properties of—and processes in—matter in the intermediate density range between the low-pressure gas and the condensed phase are discussed. Results of recent studies on the effect of the density and nature of the medium on electron production in irradiated fluids and on the state, energy, transport, and attachment of slow excess electrons in dense fluids (high-pressure gases and dielectric liquids) are described. The possible significance of electron-molecule interactions in dense gases in establishing mechanisms of radio-biological action is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. G. Christophorou. Atomic and Molecular Radiation Physics. Wiley-Interscience, New York (1971).

    Google Scholar 

  2. L. G. Christophorou, ed. Electron-Molecule Interactions and Their Applications, Vol. 1 and 2. Academic Press, New York (1984).

    Google Scholar 

  3. G. R. Freeman, ed. Kinetics of Nonhomogeneous Processes. Wiley-Interscience, New York (1987).

    Google Scholar 

  4. E. E. Kunhardt, L. G. Christophorou, and L. H. Luessen, eds. The Liquid State and Its Electrical Properties. NATO ASI Series B: Physics, Vol. 193, Plenum Press, New York (1987).

    Google Scholar 

  5. H.S.W. Massey. Electronic and Ionic Impact Phenomena, Vo1.I-IV. Oxford Press (1969).

    Google Scholar 

  6. M. Inokuti. In Applied Atomic Collision Physics. H.S.W. Massey, E. W. McDaniel and B. Bederson, eds., Vol. 4, Ch. 3 (1983).

    Google Scholar 

  7. I. Shimamura and K. Takayanagi, eds., Electron-Molecule Collisions, Plenum Press, New York (1984).

    Google Scholar 

  8. E. W. McDaniel. Atomic Collisions. John Wiley & Sons, New York (1989).

    Google Scholar 

  9. L. G. Christophorou, D. L. McCorkle, and A. A. Christodoulides. Ref. 2, Vol. 1, Chapt. 6.

    Google Scholar 

  10. L. G. Christophorou. Electron Attachment and Detachment Processes in Electronegative Gases. Plasma Physics 27: 237–281 (1987).

    CAS  Google Scholar 

  11. L. A. Pinnaduwage, L. G. Christophorou, and S. R. Hunter. Optically Enhanced Electron Attachment to Thiophenol. J. Chem. Phys. 90: 6275–6289 (1989).

    CAS  Google Scholar 

  12. L. G. Christophorou and K. Siomos. Ref. 2, Vol. 2, Chapt. 4.

    Google Scholar 

  13. L. G. Christophorou. Ref. 4, pp. 283–316.

    Google Scholar 

  14. S. R. Hunter, J. G. Carter, and L. G. Christophorou. Electron Attachment and Ionization Processes in CF4, C2F6, C3F8, and n-C4Fto. J. Chem. Phys. 86: 693–703 (1987).

    CAS  Google Scholar 

  15. S. R. Hunter, J. G. Carter, and L. G. Christophorou. Electron Transport Measurements in Methane Using an Improved Pulsed Townsend Technique. J. Appl. Phys. 60: 24–35 (1986).

    CAS  Google Scholar 

  16. S. E. Derenzo, T. S. Mast, H. Zaklad, and R. A. Muller. Electron Avalanche in Liquid Xenon. Phys. Rev. A 9: 2582–2591 (1974).

    CAS  Google Scholar 

  17. I. György and G. R. Freeman. Ionization and Electron Thermalization Distances in Isomeric Pentanes: Effects of Molecular Shape and Density. J. Chem. Phys. 86: 681–687 (1987).

    Google Scholar 

  18. R. A. Holroyd and D. F. Anderson. The Physics and Chemistry of Room-Temperature Liquid-Filled Ionization Chambers. Nucl. Instr. Meth. Phys. Res. A236: 294–299 (1985).

    Google Scholar 

  19. T. G. Ryan and G. R. Freeman. Electron Mobilities and Ranges in Methyl-Substituted Pentanes Through the Liquid and Critical Regions. J. Chem. Phys. 86: 5144–5150 (1978).

    Google Scholar 

  20. S.S.-S. Huang and G. R. Freeman. Effect of Density on the Total Ionization Yields in X-Irradiated Argon, Krypton, and Xenon. Can. J. Chem. 55: 1838–1845 (1977).

    CAS  Google Scholar 

  21. T. Takahashi, S. Konno, and T. Doke. The Average Energies, W, Required to Form an Ion Pair in Liquefied Rare Gases. J. Phys. C7: 230–240 (1974).

    CAS  Google Scholar 

  22. P. G. Fuochi and G. R. Freeman. Molecular Structure Effects on the Free-Ion Yields and Reaction Kinetics in the Radiolysis of the Methyl-Substituted Propanes and Liquid Argon: Electron and Ion Mobilities. J. Chem. Phys. 56: 2333–2341 (1972).

    CAS  Google Scholar 

  23. W. F. Schmidt and A. O. Allen. Free-Ion Yields in Sundry Irradiated Liquids. J. Chem. Phys. 52: 2345–2351 (1970).

    CAS  Google Scholar 

  24. S. Geer, R. A. Holroyd and F. Ptohos. Field Dependent Free Ion Yields of Room Temperature Tetramethyl Liquids and Their Mixtures. Nucl. Instr. Meth. Phys. Res. A287: 447–451 (1990).

    Google Scholar 

  25. R. C. Munoz, J. B. Cumming, and R. A. Holroyd. Ionization of Tetramethylsilane by Alpha Particles. Chem. Phys. Lett. 115: 477–480 (1985).

    CAS  Google Scholar 

  26. I. Lopes, H. Hilmert, and W. F. Schmidt. Ionization of Some Molecular Gases by 60Co-y-Radiation: W-Values. Radiat. Phys. Chem. 29: 93–95 (1987).

    CAS  Google Scholar 

  27. J.-P. Dodelet and G. R. Freeman. Mobilities and Ranges of Electrons in Liquids: Effect of Molecular Structure in C5–C12 Alkanes. Can. J. Chem. 50: 2667–2679 (1972).

    CAS  Google Scholar 

  28. B. S. Yakovlev and L. V. Lukin. In Photodissociation and Photoionization. K. P. Lawrey, ed., p. 99. John Wiley & Sons, New York (1985).

    Google Scholar 

  29. R. A. Holroyd and R. L. Russell. Solvent and Temperature Effects in the Photoionization of Tetramethyl-p-phenylenediamine. J. Phys. Chem. 78: 2128–2135 (1974).

    CAS  Google Scholar 

  30. R. Reininger, V. Saile, P. Laporte, and I. T. Steinberger. Photoconduction in Rare Gas Fluids Doped with Small Organic Molecules. Chem. Phys. 89: 473–479 (1984).

    CAS  Google Scholar 

  31. R. Reininger, V. Saile, G. L. Findley, P. Laporte, and I. T. Steinberger. In Photophysics and Photochemistry Above 6 eV, F. Lahmani, ed. Elsevier Science Publishers, Amsterdam, 253. U. Asaf and I. T. Steinberger, Photoconductivity and Electron Transport Parameters in Liquid and Solid Xenon. Phys Rev. B 10:4464–4468 (1974).

    Google Scholar 

  32. J. Casanovas, R. Grob, D. Delacroix, J. P. Guelfucci, and D. Blanc. Photoconductivity Studies in Some Nonpolar Liquids. J. Chem. Phys. 75: 4661–4668 (1981).

    CAS  Google Scholar 

  33. E.-H. Böttcher and W. F. Schmidt. Photoconductivity of Nonpolar Liquids Induced by Vacuum-Ultraviolet Light. J. Chem. Phys. 80: 1353–1359 (1984).

    Google Scholar 

  34. H. Faidas and L. G. Christophorou. Determination of the Ionization Threshold of Azulene in Hydrocarbon Liquids by Multiphoton Ionization. J. Chem. Phys. 88:8010–8011 (1988).

    Google Scholar 

  35. Laser Multiphoton Ionization of Aromatic Molecules in Nonpolar Liquids. Radiat. Phys. Chem. 32: 433–438 (1988).

    Google Scholar 

  36. H. Faidas, L. G. Christophorou, P. G. Datskos, and D. L. McCorkle. The Ionization Threshold of N,N,N’,N’-Tetramethyl-p-phenylenediamine. J. Chem. Phys. 90: 6619–6626 (1989).

    CAS  Google Scholar 

  37. R. D. Levin and S. G. Lias. Ionization Potential and Appearance Potential Measurements 1971–1981. NSRDS-NBS-71, U.S. Department of Commerce, NBS, Washington, D.C. (1982).

    Google Scholar 

  38. A. O. Allen. Drift Mobilities and Conduction Band Energies of Excess Electrons in Dielectric Liquids. NSRDS-NBS 58, U.S. Department of Commerce, Washington, D.C. (1976).

    Google Scholar 

  39. R. A. Holroyd, S. Tames, and A. Kennedy. Effect of Temperature on Conduction Band Energies of Electrons in Nonpolar Liquids. J. Phys. Chem. 79: 2857–2861 (1975).

    CAS  Google Scholar 

  40. E.-H. Böttcher. Experimentelle Untersuchung der photoelektrischen Leitung reiner and mit aromatischen Molekülen dotierter organischer Flüssingkeiten. GmbH HMI-B406, Berlin (1984).

    Google Scholar 

  41. K. Buschick and W. F. Schmidt. Vacuum Ultraviolet Photoconductivity of 2,2,4,4-Tetramethylpentane and Bis (Trimethylsilyl) Ethane. IEEE Trans. Electr. Insul. 24: 353–356 (1989).

    CAS  Google Scholar 

  42. H. Faidas and L. G. Christophorou. Multiphoton Ionization of Fluoranthene in Tetramethylsilane. J. Chem. Phys. 86: 2505–2509 (1987).

    CAS  Google Scholar 

  43. I. Roberts and E. G. Wilson. The Intrinsic Photoconductivity of Liquid Xenon. J. Phys. C 6: 2169–2183 (1973).

    CAS  Google Scholar 

  44. R. A. Holroyd, J. M. Preses, and N. Zevos. Single-Photon Induced Conductivity of Solutes in Nonpolar Solvents. J. Chem. Phys. 79: 483–487 (1983).

    CAS  Google Scholar 

  45. B. Raz and J. Jortner. Energy of the Quasi-Free Electron State in Liquid and Solid Rare Gases. Chem. Phys. Lett. 4: 155–158 (1969).

    CAS  Google Scholar 

  46. M. Born. Volumen and Hydratationswärme der Ionen. Z. Phys. 1: 45–48 (1920).

    Google Scholar 

  47. I. Messing and J. Jortner. Adiabatic Polarization Energy in a Simple Dense Fluid. Chem. Phys. 24: 183–189 (1977).

    CAS  Google Scholar 

  48. B. E. Springett, J. Jorner, and M. H. Cohen. Stability Criterion for the Localization of an Excess Electron in a Nonpolar Fluid. J. Chem. Phys. 48: 2720–2731 (1968).

    CAS  Google Scholar 

  49. S. Noda, L. Kevan, and K. Fueki. Conduction State Energy of Excess Electrons in Condensed Media: Liquid Methane, Ethane, and Argon and Glassy Matrices. J. Phys. Chem. 79: 2866–2874 (1975).

    CAS  Google Scholar 

  50. Y. Yamaguchi, T. Nakajima, and M. Nishikawa. Conduction Band Energy in Dense Ethane Fluid. J. Chem. Phys. 71: 550–551 (1979).

    CAS  Google Scholar 

  51. U. Asaf and I. T. Steinberger. The Energies of Excess Electrons in Helium. Chem. Phys. Lett. 128: 91–94 (1986).

    CAS  Google Scholar 

  52. R. Reininger, U. Asaf, I. T. Steinberger, and S. Basak, Relationship Between the Energy V0 of the Quasi-Free Electron and Its Mobility in Fluid Argon, Krypton, and Xenon. Phys. Rev. B 28: 4426–4432 (1983).

    CAS  Google Scholar 

  53. U. Asaf, R. Reininger, and I. T. Steinberger. The Energy Vo of the Quasi-Free Electron in Gaseous, Liquid, and Solid Methane. Chem. Phys. Lett. 100: 363–366 (1983).

    CAS  Google Scholar 

  54. J. T. Steinberger, in Ref.[4], p. 235.

    Google Scholar 

  55. U. Asaf, W. S. Felps, K. Pupnik, S. P. McGlynn, and G. Ascarelli. Density Effects of High-n Molecular Rydberg States: CH3I and C6H6 in H2 and Ar. J. Chem. Phys. 91: 5170–5174 (1989).

    CAS  Google Scholar 

  56. E. Fermi. Sopra Lo Spostamento per Pressione Delle Righe Elevate Delle Serie Spettrali. Nuovo Cimento 11: 157–166 (1934).

    CAS  Google Scholar 

  57. V. A. Alekseev and I. I. Sobel’man. A Spectroscopic Method for the Investigation of Elastic Scattering of Slow Electrons. Soy. Phys. JETP 22: 882–888 (1966).

    Google Scholar 

  58. L. Onsager. Initial Recombination of Ions. Phys. Rev. 54: 554–557 (1938).

    CAS  Google Scholar 

  59. H. Lu, F. H. Long, R. M. Bowman, and K. B. Eisenthal. Femptosecond Studies of Electron-Cation Geminate Recombination in Water. J. Phys. Chem. 93: 27–28 (1989).

    CAS  Google Scholar 

  60. C. Ferradini and J.-P. Jay-Gerin. Radiolysis of Liquids with High Static Dielectric Constant: An Estimate of the Total Ionization Yield, Electron Thermalization Distance, and Contribution of Heterogeneous Reactions. J. Chem. Phys. 89: 6719–6722 (1988).

    CAS  Google Scholar 

  61. J.-P. Jay-Gerin and C. Ferradini. On the Variation of the Free-Ion Yield with the Static Dielectric Constant in the Radiolysis of Liquids. Radiat. Phys. Chem. 33: 251–253 (1989).

    CAS  Google Scholar 

  62. R. M. Bowman, H. Lu, and K. B. Eisenthal. Femptosecond Study of Geminate Electron-Hole Recombination in Neat Alkanes. J. Chem. Phys. 89: 606–608 (1988).

    CAS  Google Scholar 

  63. J. M. Warman, E. S. Sennhauser, and D. A. Armstrong. Three-Body Electron-Ion Recombination in Molecular Gases. J. Chem. Phys. 70: 995–999 (1979).

    CAS  Google Scholar 

  64. E. S. Sennhauser, D. A. Armstrong, and J. M. Warman. The Temperature Dependence of Three-Body Electron Ion Recombination in Gaseous H2O, NH3, and CO2. Radiat. Phys. Chem. 15: 479–483 (1980).

    CAS  Google Scholar 

  65. Y. Nakamura, K. Shinsaka, and Y. Hatano. Electron Mobilities and Electron-Ion Recombination Rate Constants in Solid, Liquid, and Gaseous Methane. J. Chem. Phys. 78: 5820–5824 (1983).

    CAS  Google Scholar 

  66. N. Gee and G. R. Freeman. Density and Temperature Effects on Electron Mobility in Fluid Methane. Phys. Rev. A20: 1152–1161 (1979).

    CAS  Google Scholar 

  67. N. E. Cipollini, R. A. Holroyd and M. Nishikawa. Zero-Field Mobility of Excess Electrons in Dense Methane. J. Chem. Phys. 67: 4636–4639 (1977).

    CAS  Google Scholar 

  68. S. R. Hunter and L. G. Christophorou. Electron Attachment to the Perfluoroalkanes n-CNF2N+2(N = 1 to 6) Using High-Pressure Swarm Techniques. J. Chem. Phys. 80: 6150–6164 (1984).

    CAS  Google Scholar 

  69. L. G. Christophorou, P. G. Datskos, and J. G. Carter. (To be published.)

    Google Scholar 

  70. M. Hayashi. In Swarm Studies and Inelastic Electron-Molecule Collisions. L. C. Pitchford, B. V. McKoy, A. Chutjian, and S. Trajmar, eds. pp. 167–187. Springer-Verlag, New York (1987).

    Google Scholar 

  71. W. F. Schmidt. Electron Conduction Processes in Dielectric Liquids. IEEE Trans. Electra Insul. EI-19: 389–418 (1984).

    Google Scholar 

  72. L. G. Christophorou, S. R. Hunter, and J. G. Carter. Electron Attachment to SF6 in Gaseous Ar and Xe; Comparison to Results in Liquid Ar and Xe and Energy of Excess Electrons. Radiat. Phys. Chem. 34: 819–827 (1989).

    CAS  Google Scholar 

  73. E. Shibamura, T. Takahashi, S. Kubota, and T. Doke. Ratio of Diffusion Coefficient to Mobility for Electrons in Liquid Argon. Phys. Rev. A 20: 2547–2554 (1979).

    CAS  Google Scholar 

  74. S. Kubota, T. Takahashi, and J. Ruangen. Hot Electron Relaxation in Solid and Liquid Argon, Krypton and Xenon. J. Phys. Soc. Japan 51: 3274–3277 (1982).

    CAS  Google Scholar 

  75. S. Nakamura, Y. Sakai, and H. Tagashira. Effective Momentum Transfer Cross Section for Excess Electrons in Liquid Argon. Chem. Phys. Lett. 130: 551–554 (1986).

    CAS  Google Scholar 

  76. L. G. Christophorou. Mean Energy of Excess Electrons in Liquid Ar as a Function of E/N; Electron Attachment to N2O in Gaseous and Liquid Ar. Chem. Phys. Lett. 121: 408–411 (1985).

    CAS  Google Scholar 

  77. E. M. Gushchin, A. A. Kruglov, and I. M. Obodovskii. Electron Dynamics in Condensed Argon and Xenon. Soy. Phys. JETP 55: 650–655 (1982).

    Google Scholar 

  78. J. Lekner. Motion of Electrons in Liquid Argon. Phys. Rev. 158: 130–137 (1967).

    CAS  Google Scholar 

  79. G. Bakale and G. Beck. Field-Dependent Electron Attachment in Liquid Tetramethylsilane. J. Chem. Phys. 84: 5344–5350 (1986).

    CAS  Google Scholar 

  80. H. Faidas, L. G. Christophorou, D. L. McCorkle, and J. G. Carter. Electron Drift Velocities and Electron Mobilities in Fast Room Temperature Dielectric Liquids and Their Corresponding Vapors. Nucl. Instr. Meth. Phys. Res. A 294: 575–582 (1990).

    Google Scholar 

  81. L.G.H. Huxley and R. W. Crompton. The Diffusion and Drift of Electrons in Gases. WileyInterscience, New York (1974).

    Google Scholar 

  82. W. L. Morgan. A Bibliography of Electron Swarm Data 1978–1989. JILA Data Center. Report No. 33, NIST, Boulder, Colorado, July (1990).

    Google Scholar 

  83. L. C. Pitchford and A. V. Phelps. Comparative Calculations of Electron Swarm Properties in N2 at Moderate E/N Values. Phys. Rev. A 25: 540–554 (1982).

    CAS  Google Scholar 

  84. G. L. Braglia, L. Romano, and M. Diligenti. Comment on “Comparative Calculations of Electron Swarm Properties in N2 at Moderate E/N Values.” Phys. Rev. A 26: 3689–3694 (1982).

    CAS  Google Scholar 

  85. M. Yousfi, P. Ségur, and T. Vassiliadis. Solution of the Boltzmann Equation with Ionization and Attachment: Application to SF6. J. Phys. D 18: 359–375 (1985).

    CAS  Google Scholar 

  86. S. Yachi, Y. Kitamura, K. Kitamori, and H. Tagashira. A Multi-Term Boltzmann Equation Analysis of Electron Swarms in Gases. J. Phys. D 21: 914–921 (1988).

    CAS  Google Scholar 

  87. J. J. Lowke, A. V. Phelps, and B. W. Irwin. Predicted Electron Transport Coefficients and Operating Characteristics of CO2–N2-He Laser Mixtures. J. Appl. Phys. 44: 4664–4671 (1973).

    CAS  Google Scholar 

  88. B. R. Bulos and A. V. Phelps. Excitation of the 4.3 µm Bands of CO2 by Low-Energy Electrons. Phys. Rev. A 14: 615–629 (1976).

    CAS  Google Scholar 

  89. D. Rapp and P. Englander-Golden. Total Cross Sections for Ionization and Attachment in Gases by Electron Impact: I Positive Ionization. J. Chem. Phys. 43: 1464–1479 (1965).

    CAS  Google Scholar 

  90. S. R. Hunter and L. G. Christophorou. Ref. 2, Vol. 2, p. 202.

    Google Scholar 

  91. T. F. O’Malley. Electron Diffusion and the Einstein Relation in High-Density Gases. Phys. Lett. 95A: 32–34 (1983).

    Google Scholar 

  92. V. M. Atrazhev and I. T. Yakubov. The Electron Drift Velocity in Dense Gases. J. Phys. D 10: 2155–2163 (1977).

    CAS  Google Scholar 

  93. Electron Mobility in Liquids and Dense Gases. High Temp. 18: 966–985 (1980).

    Google Scholar 

  94. G. L. Braglia and V. Dallacasa. Theory of the Density Dependence of Electron Drift Velocity in Gases. Phys. Rev. A 18:711–717(1978);

    CAS  Google Scholar 

  95. Theory of Electron Mobility in Dense Gases, Phys. Rev. A 26: 902–914 (1982).

    Google Scholar 

  96. M. H. Cohen and J. Lekner. Theory of Hot Electrons in Gases, Liquids, and Solids. Phys. Rev. 158: 305–309 (1967).

    CAS  Google Scholar 

  97. J. Lekner. Mobility Maxima in the Rare-Gas Liquids. Phys. Lett. A27: 341–348 (1968).

    CAS  Google Scholar 

  98. S. Basak and M. H. Cohen. Deformation-Potential Theory for the Mobility of Excess Electrons in Liquid Argon. Phys. Rev. B 20: 3404–3414 (1979).

    CAS  Google Scholar 

  99. H. T. Davis, L. D. Schmidt, and R. M. Minday. Kinetic Theory of Excess Electrons in Polyatomic Gases, Liquids, and Solids. Phys. Rev. A 3: 1027–1037 (1971).

    Google Scholar 

  100. T. F. O’Malley. Multiple Scattering Effect on Electron Mobilities in Dense Gases. J. Phys. B 13: 1491–1504 (1980).

    Google Scholar 

  101. L. G. Christophorou. Mobilities of Slow Electrons in Low-and High-Pressure Gases and Liquids. Intern. J. Radiat. Phys. Chem. 7: 205–221 (1975).

    CAS  Google Scholar 

  102. H. Lehning. Resonance Capture of Very Slow Electrons in CO2. Phys. Lett. 28A: 103–104 (1968).

    CAS  Google Scholar 

  103. Th. Aschwanden. In Gaseous Dielectrics III. L. G. Christophorou, ed., p. 32, Pergamon Press, New York (1982).

    Google Scholar 

  104. L. G. Christophorou, J. G. Carter, and D. V. Maxey. Electron Motion in High-Pressure Polar Gases: NH3. J. Chem. Phys. 76: 2653–2661 (1982).

    CAS  Google Scholar 

  105. P. Krebs and M. Heintze. Migration of Excess Electrons in High Density Supercritical Ammonia. J. Chem. Phys. 76: 5484–5492 (1982).

    CAS  Google Scholar 

  106. P. Krebs. Localization of Excess Electrons in Dense Polar Vapors. J. Phys. Chem. 88: 3702–3709 (1984).

    CAS  Google Scholar 

  107. V. V. Dmitrenko, A. S. Romanyuk, S. I. Suchkov and Z. M. Uteshev. Electron Mobility in Dense Xenon Gas. Soy. Phys. Tech. Phys. 28: 1440–1444 (1983).

    Google Scholar 

  108. G. R. Freeman. In Electron and Ion Swarms, L. G. Christophorou, ed., p. 93, Pergamon Press, New York (1981).

    Google Scholar 

  109. A. G. Robertson. Drift Velocities of Low-Energy Electrons in Argon at 293 and 90 K. Aust. J. Phys. 30: 39–49 (1977).

    CAS  Google Scholar 

  110. S. R. Hunter, J. G. Carter, and L. G. Christophorou. Low-Energy Electron Drift and Scattering in Krypton and Xenon. Phys. Rev. A38: 5539–5551 (1988).

    CAS  Google Scholar 

  111. L. S. Miller, S. Howe, and W. E. Spear. Charge Transport in Solid and Liquid Ar, Kr, and Xe. Phys. Rev. 166: 871–878 (1968).

    CAS  Google Scholar 

  112. Y. Sakai, S. Nakamura, and H. Tagashira. Drift Velocity of Hot Electrons in Liquid Ar, Kr, and Xe. IEEE Trans. Electr. Insul. EI-20: 133–137 (1985).

    Google Scholar 

  113. L. G. Christophorou and D. L. McCorkle. Experimental Evidence for the Existence of a Ramsauer-Townsend Minimum in Liquid CH4 and Liquid Ar (Kr and Xe). Chem. Phys. Lett. 42: 533–539 (1976).

    CAS  Google Scholar 

  114. W. F. Schmidt. In Ref. 4, p. 273.

    Google Scholar 

  115. H. Faidas, L. G. Christophorou, and D. L. McCorkle. Electron Transport in Fast Dielectric Liquids at High Applied Electric Fields. Proceedings 10th Intern. Conf. on Conduction and Breakdown in Dielectric Liquids, Grenoble, France, September 10–14 (1990).

    Google Scholar 

  116. Drift Velocities of Excess Electrons in 2,2,4,4-Tetramethylpentane and Tetramethylsilane: A Fast Drift Technique. Chem. Phys. Lett. 163: 495–498 (1989).

    Google Scholar 

  117. C. Brassard. Liquid Ionization Detectors. Nucl. Instr. Meth. 162: 29–47 (1979).

    CAS  Google Scholar 

  118. J. Engler and H. Keim. A Liquid Ionization Chamber Using Tetramethylsilane. Nucl. Instr. Meth. Phys. Res. 223: 47–51 (1984).

    CAS  Google Scholar 

  119. M. G. Albrow, et al. Performance of a Uranium/letramethylpentane Electromagnetic Calorimeter. Nucl. Instr. Meth. A265: 303–318 (1988).

    Google Scholar 

  120. L. G. Christophorou and H. Faidas. Dielectric Liquids for Possible Use in Pulsed Power Switches. Appl. Phys. Lett. 55: 948–950 (1989).

    CAS  Google Scholar 

  121. J. E. Demuth, D. Schmeisser, and Ph. Avouris. Resonance Scattering of Electrons from N2, CO, 02, and H2 Adsorbed on a Silver Surface. Phys. Rev. Lett. 47: 1166–1169 (1981).

    CAS  Google Scholar 

  122. L. Sanche and M. Michaud. Resonance-Enhanced Vibrational Excitation in Electron Scattering from 02 Multilayer Films. Phys. Rev. Lett. 47: 1008–1011 (1981).

    CAS  Google Scholar 

  123. Vibrational Excitation Via Shape Resonances in Electron Scattering from N2 Multilayer Films. Chem. Phys. Lett. 84: 497–500 (1981).

    Google Scholar 

  124. L. Sanche. Investigation of Ultra-Fast Events in Radiation Chemistry with Low-Energy Electrons. Radiat. Phys. Chem. 34: 15–33 (1989).

    CAS  Google Scholar 

  125. Low-Energy Electron Scattering from Molecules on Surfaces. J. Phys. B 23: 1597–1624 (1990).

    Google Scholar 

  126. R. E. Goans and L. G. Christophorou. Attachment of Slow ( 1 eV) Electrons to 02 in Very High Pressures of Nitrogen, Ethylene, and Ethane. J. Chem. Phys. 60: 1036–1045 (1974).

    CAS  Google Scholar 

  127. D. L. McCorkle, L. G. Christophorou, and V. E. Anderson. Low-Energy (1 eV) Electron Attachment to Molecules at Very High Gas Densities: 02. J. Phys. B 5: 1211–1220 (1972).

    CAS  Google Scholar 

  128. L. G. Christophorou. Intermediate Phase Studies for Understanding Radiation Interaction in Condensed Media: The Electron Attachment Process. J. Phys. Chem. 76: 3730–3734 (1972).

    CAS  Google Scholar 

  129. Electron Attachment to Molecules in Dense Gases (“Quasi-Liquids”). Chem. Rev. 76:409–423 (1976).

    Google Scholar 

  130. T. D. Murk and A. W. Castleman, Jr. In Advances in Atomic and Molecular Physics, D. R. Bates and B. Bederson, eds., 20:65–172. Academic Press, Orlando, Florida (1985).

    Google Scholar 

  131. A. W. Castleman, Jr., and R. G. Keesee. Gas-Phase Clusters: Spanning the States of Matter. Science 241: 36–42 (1988).

    PubMed  CAS  Google Scholar 

  132. R. G. Keesee and A. W. Castleman, Jr. In Atomic and Molecular Clusters, E. R. Bernstein, ed., pp. 507–550. Elsevier Scientific Publishing Company, Amsterdam (1990).

    Google Scholar 

  133. R. N. Compton and J. N. Bardsley. In Electron-Molecule Collisions, I. Shimamura and K. Takayanagi, eds., pp. 275–349. Plenum Press, New York (1984).

    Google Scholar 

  134. L. G. Christophorou. The Lifetimes of Metastable Negative Ions. Adv. Electron. Electron Phys. 46: 55–129 (1978).

    CAS  Google Scholar 

  135. H.S.W. Massey. Negative Ions. Cambridge University Press, Cambridge (1976).

    Google Scholar 

  136. B. M. Smirnov. Negative Ions. McGraw-Hill, New York (1982).

    Google Scholar 

  137. L. G. Christophorou and S. R. Hunter. Ref. 2, Vol. 2, Chapt. 5.

    Google Scholar 

  138. L. G. Christophorou, D. L. McCorkle, D. V. Maxey, and J. G. Carter. Fast Gas Mixtures for Gas-Filled Particle Detectors. Nucl. Instr. Meth. 163: 141–149 (1979).

    CAS  Google Scholar 

  139. M. K. Kopp, K. H. Valentine, L. G. Christophorou, and J. G. Carter. New Gas Mixture Improves Performance of 3H Neutron Counters. NucL Instr. Meth. 201: 395–401 (1982).

    CAS  Google Scholar 

  140. L. G. Christophorou, H. Faidas and D. L. McCorkle. In Nonequilibrium Effects in Ion and Electron Transport, J. W. Gallagher, D. F. Hudson, E. E. Kunhardt, and R. J. Van Brunt, eds., pp. 313–328, Plenum Press, New York (1990).

    Google Scholar 

  141. A. Zlatkis and C. F. Poole, eds. Electron Capture: Theory and Practice in Chromatography. Journal of Chromatography Library, Vol. 20. Elsevier Scientific Publishing Company, Amsterdam (1981).

    Google Scholar 

  142. L. G. Christophorou, D. L. McCorkle, and I. Sauers. Tagging Materials for Detection of Explosives. Analytical Chimica Acta 135: 179–192 (1982).

    CAS  Google Scholar 

  143. L. G. Christophorou and D. W. Bouldin, eds. Gaseous Dielectrics V. Pergamon Press, New York (1987).

    Google Scholar 

  144. L. G. Christophorou and M. O. Pace, eds., Gaseous Dielectrics IV, Pergamon Press, New York (1984).

    Google Scholar 

  145. L. G. Christophorou and L. Pinnaduwage. Basic Physics of Gaseous Dielectrics. IEEE Trans. Electr. InsuL 25: 55–74 (1990).

    CAS  Google Scholar 

  146. A. Guenther, M. Kristiansen, and T. Martin, eds. Opening Switches. Plenum Press, New York (1987).

    Google Scholar 

  147. L. G. Christophorou. Electron Collisions in Gas Switches. In Nonequilibrium Processes in Partially Ionized Gases, M. Capitelli and J. N. Bardsley, eds. Plenum Press, New York (1990).

    Google Scholar 

  148. S. R. Hunter, J. G. Carter, and L. G. Christophorou. Electron Transport Studies of Gas Mixtures for Use in e-Beam Controlled Diffuse Discharge Switches. J. AppL Phys. 58:3001–3015 (1985).

    CAS  Google Scholar 

  149. G. E. Caledonia. A Survey of the Gas-Phase Negative Ion Kinetics of Inorganic Molecules. Electron Attachment Reactions. Chem. Rev. 75: 333–351 (1975).

    CAS  Google Scholar 

  150. L. G. Christophorou. Interactions of 02 with Slow Electrons. Radiat. Phys. Chem. 12: 19–34 (1978).

    CAS  Google Scholar 

  151. Y. Hatano and H. Shimamori. In Electron and Ion Swarms, L. G. Christophorou, ed., pp. 103–116. Pergamon Press, New York (1981).

    Google Scholar 

  152. H. Shimamori and Y. Hatano. Mechanism of Thermal Electron Attachment in 02-N2 Mixtures. Chem. Phys. 12: 439–445 (1976).

    CAS  Google Scholar 

  153. H. Shimamori and R. W. Fessenden. Thermal Electron Attachment to Oxygen and Van der Waals Molecules Containing Oxygen. J. Chem. Phys. 74: 453–466 (1981).

    CAS  Google Scholar 

  154. S. R. Hunter, L. G. Christophorou, D. L. McCorkle, I. Sauers, H. W. Ellis, and D. R. James. Anomalous Electron Attachment Properties of Perfluoropropylene (1-C3F6) and Their Effect on the Breakdown Strength of This Gas. J. Phys. D 16: 573–580 (1982).

    Google Scholar 

  155. G. Bakale, U. Sowada, and W. F. Schmidt. Effect of an Electric Field on Electron Attachment to SF6, N2O, and 02 in Liquid Argon and Xenon. J. Phys. Chem. 80: 2556–2559 (1976).

    CAS  Google Scholar 

  156. G. Bakale and W. F. Schmidt. Effect of an Electric Field on Electron Attachment to SF6 in Liquid Ethane and Propane. Z. Naturforsch. 36a: 802–806 (1981).

    Google Scholar 

  157. S. R. Hunter and L. G. Christophorou. Basic Studies of Gases for Fast Switches. Oak Ridge National Laboratory Report ORNL/TM-10844, August (1988).

    Google Scholar 

  158. T. F. O’Malley. Calculation of Dissociative Attachment in Hot 02. Phys. Rev. 155: 59–63 (1967).

    Google Scholar 

  159. J. N. Bardsley and J. M. Wadehra. Dissociative Attachment and Vibrational Excitation in Low-Energy Collisions of Electrons with H2 and D2. Phys. Rev. 20: 1398–1405 (1979).

    CAS  Google Scholar 

  160. Dissociation Attachment in HC1, DCI, and F2. J. Chem. Phys. 78: 7227–7234 (1983).

    Google Scholar 

  161. S. M. Spyrou and L. G. Christophorou. Effect of Temperature on the Dissociative Electron Attachment to CCIF3 and C2F6. J. Chem. Phys. 82: 2620–2629 (1985).

    CAS  Google Scholar 

  162. E. Alge, N. G. Adams, and D. Smith. Rate Coefficients for the Attachment Reactions of Electrons with c-C7F14, CH3Br, CF3Br, CH2Br2, and CH3I Determined Between 200 and 600 K Using the FALP Technique. J. Phys. B 17: 3827–3833 (1984).

    CAS  Google Scholar 

  163. S. M. Spyrou and L. G. Christophorou. Effect of Temperature of the Dissociative and Nondissociative Electron Attachment to C3F8. J. Chem. Phys. 83: 2829–2835 (1985).

    CAS  Google Scholar 

  164. P. G. Datskos and L. G. Christophorou. Variation with Temperature of the Electron Attachment to SO2F2. J. Chem. Phys. 90: 2626–2630 (1989).

    CAS  Google Scholar 

  165. P. G. Datskos, L. G. Christophorou, and J. G. Carter. Temperature-Enhanced Electron Attachment to CH3C1. Chem. Phys. Lett. 168: 324–329 (1990).

    CAS  Google Scholar 

  166. P. J. Chantry and C. L. Chen. Ionization and Temperature Dependent Attachment Cross Section Measurements in C3F8 and C2H3C1. J. Chem. Phys. 90: 2585–2592 (1989).

    CAS  Google Scholar 

  167. P. G. Datskos and L. G. Christophorou. Variation of Electron Attachment to n-C4F10 with Temperature. J. Chem. Phys. 86: 1982–1990 (1987).

    CAS  Google Scholar 

  168. S. M. Spyrou and L. G. Christophorou. Effect of Temperature on Nondissociative Electron Attachment to Perfluorobenzene. J. Chem. Phys. 82: 1048–1049 (1985).

    CAS  Google Scholar 

  169. A. A. Christodoulides, L. G. Christophorou, and D. L. McCorkle. Effect of Temperature on Low-Energy ( 1 eV) Electron Attachment to Perfluorocyclobutane (c-C4F8). Chem. Phys. Lett. 139: 350–356 (1987).

    CAS  Google Scholar 

  170. C. L. Chen and P. J. Chantry. Photon-Enhanced Dissociative Electron Attachment in SF6 and Its Isotopic Selectivity. J. Chem. Phys. 71: 3897–3907 (1979).

    CAS  Google Scholar 

  171. I. M. Beterov and N. V. Fateyev. Laser Optogalvanic Effects Caused by Formation of Negative Ions. J. de Phys. (Paris), Colloq., C7: 447 (1983).

    Google Scholar 

  172. M. W. McGeoch and R. E. Schlier. Dissociative Attachment in Optically Pumped Lithium Molecules. Phys. Rev. A 33: 1708–1717 (1986).

    PubMed  CAS  Google Scholar 

  173. R. I. Hall and S. Trajmar. Scattering of 4.5 eV Electrons by Ground (X3 Eg) State and Metastable (a1 0g) Oxygen Molecules. J. Phys. B 8: L293 - L296 (1975).

    CAS  Google Scholar 

  174. P. D. Burrow. Dissociative Attachment to 02(a10g) State. J. Chem. Phys. 59:4922–4931 (1973).

    CAS  Google Scholar 

  175. D. S. Belic and R. I. Hall. Dissociative Electron Attachment to Metastable Oxygen (alAg). J. Phys. B 14: 365–373 (1981).

    CAS  Google Scholar 

  176. L. G. Christophorou, S. R. Hunter, L. A. Pinnaduwage, J. G. Carter, A. A. Christodoulides, and S. M. Spyrou. Optically-Enhanced Electron Attachment. Phys. Rev. Leu. 58: 1316–1319 (1987).

    CAS  Google Scholar 

  177. L. A. Pinnaduwage, L. G. Christophorou, and A. P. Bitouni. Enhanced Electron Attachment to Superexcited States of Saturated Tertiary Amines. J. Chem. Phys. 95: 274–287 (1991).

    CAS  Google Scholar 

  178. R. S. Mock and E. P. Grimsrud. Optically-Enhanced Electron Capture by p-Benzoquinone and Its Methylated Derivatives. J. Phys. Chem. 94: 3550–3553 (1990).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Christophorou, L.G. (1991). Radiation Interactions in High-Pressure Gases. In: Glass, W.A., Varma, M.N. (eds) Physical and Chemical Mechanisms in Molecular Radiation Biology. Basic Life Sciences, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7627-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7627-9_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7629-3

  • Online ISBN: 978-1-4684-7627-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics