Skip to main content

Part of the book series: Basic Life Sciences ((BLSC,volume 58))

Abstract

Some of the background to radiation chemical studies of DNA damage is presented, followed by a review of measurements of such damage and its repair in mammalian cells. While most effort has been placed on the measurement of radiation-induced strand breaks (because assays can be used in the biologically relevant dose range), the radiation-altered bases are less studied. Attempts have been made to devise assays for base-damage measurement in cellular DNA after irradiation; the problems of using such assays at reasonable radiation doses are discussed. The alternate approach to measuring yields and chemical identities of damages in cells is extrapolation from model systems. The limitations of extrapolation are considered in the context of the intracellular structures in which DNA exists and the problems in predicting mechanisms of intracellular damage induction. The complexities of damages that could be lethal are considered; “double-strand break” is the generic term for a wide variety of damages, each of which is produced by a similar mechanism. Many of the damages caused by multiple radicals have the potential to be lethal. The current work of the author is outlined along with his attempts to throw light on the topics described above. Some potentially fruitful directions for future research are suggested. These would help to build bridges between studies of the physics of energy deposition and the chemistry of cellular radiation damage and to provide a comprehensive basis for the prediction of the biological effects consequent to the deposition of radiation energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.A.V. Butler and B. E. Conway. The Action of Ionizing Radiations and of Radiomimetic Substances on Deoxyribonucleic Acid. Part II. The Effect of Oxygen on the Degradation of the Nucleic Acid by X-Rays. J. Chem. Soc. 3418–3421 (1950).

    Google Scholar 

  2. G. Scholes and J. Weiss. Chemical Action of X-rays on Nucleic Acids and Related Substances in Aqueous Systems. Exp. Cell Res. Suppl. 2: 219 (1952).

    CAS  Google Scholar 

  3. M. Daniels, G. Scholes, and J. Weiss. Chemical Action of Ionizing Radiations in Solution. Part XVII Degradation of Deoxyribonucleic Acid in Aqueous Solution by Irradiation with X-Rays. J. Chem. Soc. 38: 226–232 (1957).

    Article  Google Scholar 

  4. G. Scholes, J. F. Ward and J. Weiss. Mechanisms of the Radiation Induced Degradation of Nucleic Acids. J. Mol. Biol. 2: 379–391 (1960).

    Article  PubMed  CAS  Google Scholar 

  5. R. Téoule and J. Cadet. Radiation-Induced Degradation of the Base Components in DNA and Related Substances-Final Products. In Effects of Ionizing Radiation on DNA. J. Hütterman, W. Köhnlein, R. Téoule and A. J. Bertinchamps, eds., pp. 171–203. Springer, Berlin (1978).

    Google Scholar 

  6. C. von Sonntag. Carbohydrate Radicals: from Ethylene Glycol to DNA-Strand Breakage. Int. J. Radiat. Biol. 46: 507–519 (1984).

    Article  Google Scholar 

  7. R. A. McGrath and R. W. Williams. Reconstruction in vivo of Irradiated Escherichia Coli Deoxyribonucleic Acid: The Rejoining of Broken Pieces. Nature 212: 534–535 (1966).

    Article  PubMed  CAS  Google Scholar 

  8. J. T. Lett, I. Caldwell, C. J. Dean and P. Alexander. Rejoining of X-ray Induced Breaks in the DNA of Leukaemia Cells. Nature 214: 790–792 (1967).

    Article  PubMed  CAS  Google Scholar 

  9. P. M. Cony and A. Cole. Double-Strand Break Rejoining in Mammalian DNA. Nature New Biology 245: 100–101 (1973).

    Google Scholar 

  10. F. Hutchinson. The Molecular Basis for Radiation Effects on Cells. Cancer Res. 26: 2045–2052 (1966).

    PubMed  CAS  Google Scholar 

  11. S. Okada. DNA as Target Molecule Responsible for Cell Killing. In Radiation Biochemistry: Cells. Chapter III, pp. 103–147. Academic Press, New York (1970).

    Google Scholar 

  12. R. B. Painter. The Role of DNA Damage and Repair in Cell Killing Induced by Ionizing Radiation. In Radiation Biology in Cancer Research, R. E. Meyn and H. R. Withers, eds., pp. 59–68. Raven Press, New York (1979).

    Google Scholar 

  13. J. F. Ward. DNA Damage Produced by Ionizing Radiation in Mammalian Cells: Identities, Mechanisms of Formation and Repairability. Frog. in Nucleic Acid Res. and Mol. Biol. 35:95–125 (1988).

    Article  CAS  Google Scholar 

  14. Z. Somosy, T. Kubasova and G. J. Köteles. The Effects of Low Doses of Ionizing Radiation upon the Micromorphology and Functional State of the Cell Surface. Scanning Microsc. 1: 1267–1278 (1987).

    PubMed  CAS  Google Scholar 

  15. S. M. Chiu, L. R. Friedman, N. M. Sokany, L. Y. Xue and N. L. Oleinick. Nuclear Matrix Proteins are Crosslinked to Transcriptionally Active Gene Sequences by Ionizing Radiation. Radiat. Res. 107: 24–38 (1986).

    Article  PubMed  CAS  Google Scholar 

  16. G. J. West, I.W.-L. West and J. F. Ward. Radioimmunoassay of a Thymine Glycol. Radiat. Res. 90: 595–608 (1982).

    Article  PubMed  CAS  Google Scholar 

  17. S. A. Leadon and P. C. Hanawalt. Monoclonal Antibody to DNA Containing Thymine Glycol. Mutat. Res. 112: 191–200 (1983).

    PubMed  CAS  Google Scholar 

  18. K. Hubbard, H. Huang, M. F. Laspia, H. Ide, H.B.F. Erlanger and S. S. Wallace. Immunochemical Quantitation of Thymine Glycol in Oxidized and X-irradiated DNA. Radial. Res. 118: 257–268 (1989).

    Article  CAS  Google Scholar 

  19. A. F. Fuciarelli, B. J. Wegher, E. Gajewski, M. Dizdaroglu and W. F. Blakely. Quantitative Measurements of Radiation-Induced Base Products in DNA Using Gas Chromatography-Mass Spectrometry. Radiat. Res. 119: 219–231 (1989).

    Article  PubMed  CAS  Google Scholar 

  20. J. F. Mouret, F. Odin, M. Polverelli and J. Cadet. 32P Postlabelling Measurement of Adenine-N-1oxide in Cellular DNA Exposed to Hydrogen Peroxide. Chem. Res. Toxicol. 3: 102–110 (1990).

    Article  PubMed  CAS  Google Scholar 

  21. M. Weinfeld, M. Liuzzi and M. C. Paterson. Response of Phage T4 Polynucleotide Kinase Towards Dinucleotides Containing Apurinic Sites: Design of a 32P-Postlabelling Assay for Apurinic Sites in DNA. Biochemistry 29: 1737–1743 (1990).

    Article  PubMed  CAS  Google Scholar 

  22. M. Sharma, H. C. Box and D. J. Kelman. Fluorescence Postlabelling Assay of Thymidine Glycol Monophosphate in X-irradiated Calf Thymus DNA. Chemico-Biol. Interact. 764: 107–117 (1990).

    Article  Google Scholar 

  23. P. V. Hariharan and P. A. Cerutti. Formation and Repair of Gamma-Ray Induced Thymine Damage in Micrococcus Radiodurans. J. Mol. Biol. 66: 65–81 (1972).

    Article  PubMed  CAS  Google Scholar 

  24. M. C. Paterson and R. B. Setlow. Endonucleolytic Activity from Micrococcus Luteus that Acts on y-Ray-Induced Damage in Plasmid DNA of Escherichia Coli Minicells. Proc. Nat. Acad. Sci. (USA) 72: 1997–2001 (1975).

    Article  Google Scholar 

  25. G. J. West, I.W.-L. West and J. F. Ward. Radioimmunoassay of 7,8-Dihydro-8-Oxoadenine (8hydroxyadenine). Int. J. Radiat. Biol. 42: 481–490 (1982).

    Article  CAS  Google Scholar 

  26. J. F. Ward, W. F. Blakely and E. I. Joner. Mammalian Cells are not Killed by DNA Single-Strand Breaks Caused by Hydroxyl Radicals from Hydrogen Peroxide. Radiat. Res. 104: 383–393 (1985).

    Article  Google Scholar 

  27. W. F. Blakely, A. F. Fuciarelli, B. J. Wegher and M. Dizdaroglu. Hydrogen Peroxide-Induced Base Damage in Deoxyribonucleic Acid. Radiat. Res. 121: 338–343 (1990).

    Article  PubMed  CAS  Google Scholar 

  28. J. F. Ward. The Yield of DNA Double-Strand Breaks Produced by Ionizing Radiation. Int. J. Radiat. Biol. 57: 1141–1150 (1990).

    Article  PubMed  CAS  Google Scholar 

  29. I. A. Radford. Evidence for a General Relationship Between the Induced Level of DNA Double-Strand Breakage and Cell Killing After X-Irradiation of Mammalian Cells. Int. J. Radiat. Biol. 49: 611–620 (1986).

    Article  CAS  Google Scholar 

  30. T. Coquerelle, A. Bopp, B. Kessler and U. Hagen. Strand Breaks and 5’ End Groups in DNA of Irradiated Thymocytes. lnt. J. Radiat. Biol. 24: 397–404 (1973).

    Article  CAS  Google Scholar 

  31. M. Fielden and P. O’Neill, eds. Early Effects of Radiation on DNA. NATO Advanced Research Workshop Series. Springer Verlag, New York (1991).

    Google Scholar 

  32. D. Schulte-Frohlinde and E. Bothe. Identification of a Major Pathway of Strand Break Formation in Poly U Induced by OH Radicals in the Presence of Oxygen. Zeitshrift far Naturforschung 39c: 315–319 (1984).

    CAS  Google Scholar 

  33. J. F.Ward. DNA Lesions Produced by Ionizing Radiation: Locally Multiply Damaged Sites. In Ionizing Radiation Damage to DNA: Molecular Aspects, S. S. Wallace and R. B. Painter, eds. Wiley-Liss, New York (1990).

    Google Scholar 

  34. J. F. Ward and I. Kuo. Deoxynucleotides - Models for Studying Mechanisms of Strand Breakage in DNA. II Thymidine 3’5’- Diphosphate. Int. J. Radiat. Biol. 23: 543–557 (1973).

    Article  CAS  Google Scholar 

  35. J. F. Ward. Biochemistry of DNA Lesions. Radiat. Res. 104: S103–S111 (1985).

    Article  CAS  Google Scholar 

  36. J. F. Ward. Some Biochemical Consequences of the Spatial Distribution of Ionizing Radiation Produced Free Radicals. Radiat. Res. 86: 185–195 (1981).

    Article  PubMed  CAS  Google Scholar 

  37. J. F. Ward. Mechanisms of Radiation Action on DNA in Model Systems - Their Relevance to Cellular DNA. In The Early Effects of Radiation on DNA,E. M. Fielden and P. O’Neill, eds. NATO Advanced Research Workshop. Springer-Verlag, New York (in press).

    Google Scholar 

  38. D. T. Goodhead and H. Nikjoo. Track Structure Analysis of Ultrasoft X-Rays Compared to High-and Low-LET Radiations. Int. J. Radiat. Biol. 55: 513–529 (1989).

    Article  PubMed  CAS  Google Scholar 

  39. M. R. Raju, S. G. Carpenter, J. J. Chmielewski, M. E. Scillaci, M. E. Wilder, J. P. Freyer, N. F. Johnson, P. L. Schor, J. Sebring and D. T. Goodhead. Radiobiology of Ultrasoft X-Rays. I. Cultured Hamster Cells (V79). Radiat. Res. 110: 396–412 (1987).

    Article  PubMed  CAS  Google Scholar 

  40. S. S. Wallace. AP Endonucleases and DNA Glycosylases that Recognize Oxidative DNA Damage. Environ. and Mol. Mutagen. 12: 431–477 (1988).

    Article  CAS  Google Scholar 

  41. M. R. Mattem, P. V. Hariharan and P. A. Cerutti. Selective Excision of Gamma Ray Damaged Thymine Products from the DNA of Cultured Mammalian Cells. Biochim. et Biophys. Acta 395: 48–55 (1975).

    Google Scholar 

  42. M. C. Paterson, B. P. Smith, P.H.M. Lohman, A. K. Anderson and L. Fishman. Defective Excision Repair of y-Ray Damaged in Human (Ataxia Telangiectasia) Fibroblasts. Nature (London) 260: 444–447 (1976).

    CAS  Google Scholar 

  43. R. B. Painter and B. R. Young. Radiosensitivity in Ataxia Telangiectasia: A New Explanation. Proc. Nat. Acad. Sci. (USA) 77: 7315–7317 (1980).

    Article  CAS  Google Scholar 

  44. P. E. Bryant. Kinetics and Mechanism of DNA-Strand Break Repair. J. Cancer Res. and Clinic One., 116:843. Suppl. Part II, Abst. 05. 16. 05 (1990).

    Google Scholar 

  45. D. Blöcher, M. Nüsse, and P. E. Bryant. Kinetics of Double-Strand Break Repair in the DNA of X-Irradiated Synchronized Mammalian Cells. Int. J. Radiat. Biol. 43: 579–584 (1983).

    Article  Google Scholar 

  46. P. E. Bryant and D. Blöcher. The Effects of 9-ß-D-Arabino-furanosyladenine on the Repair of DNA-Strand Breaks in X-Irradiated Ehrlich Ascites Tumor Cells. Int J. Radiat. Biol. 42: 385–394 (1982).

    Article  CAS  Google Scholar 

  47. J. F. Ward, E. I. Joner, and W. F. Blakely. Effects of Inhibitors of DNA-Strand Break Repair on HeLa Cell Radiosensitivity. Cancer Res. 44: 59–63 (1984).

    Google Scholar 

  48. A. Giaccia, R. Weinstein, J. Hu, and T. D. Stamato. Cell Cycle-Dependent Repair of Double-Strand Breaks in a y-Ray Sensitive Chinese Hamster Cell. Somatic Cell and Mol. Genet. 11: 485–491 (1985).

    Article  CAS  Google Scholar 

  49. G. E. Iliakis and T. Okayasu. Radiosensitivity Throughout the Cell Cycle and Repair of Potentially Lethal Damage and DNA Double-Strand Breaks in an X-Ray-Sensitive CHO Mutant. Int. J. Radiat. Biol. 57: 1195–1211 (1990).

    Article  PubMed  CAS  Google Scholar 

  50. P. Oudet, E. Weiss, and E. Regnier. Preparation of Simian Virus 40 Minichromosomes, Methods in Enzymology: Nucleosomes. P. M. Wasserman and R. D. Kornberg, eds. Academic Press 170:1452 (1989).

    Google Scholar 

  51. P. M. Calabro-Jones, D. T. Lai, J. R. Milligan, T. R. Nelson, and J. F. Ward. Alpha Particle Irradiation of DNA. 38th Annual Radial. Res. Soc. Mtg., New Orleans, Abstract Ei4 (1990).

    Google Scholar 

  52. H. Martin-Bertram, P. Hartl and C. Winkler. Unpaired Bases in Phage DNA after Gamma-Irradiation In-Situ and In-Vivo. Radiat. Environ. Biophys. 23: 95–105 (1984).

    Article  PubMed  CAS  Google Scholar 

  53. L. L. Ling and J. F. Ward. Radiosensitization of Chinese Hamster Cells by Bromodeoxyuridine Substitution of Thymidine: Enhancement of Radiation-Induced Toxicity and DNA-Strand Break Production by Monofilar and Bifilar Substitution. Radias. Res. 121: 76–83 (1990).

    Article  CAS  Google Scholar 

  54. P. M. Calabro-Jones, J. Aguilera, J. F. Ward, G. D. Smoluk, and R. C. Fahey. Radioprotection of Cells in Culture by WR-2721 and WR-1065: Dependence of Protection upon Intracellular WR-1065. Cancer Res. 48: 3634–3640 (1988).

    PubMed  CAS  Google Scholar 

  55. J. D. Zimbrick, J. F. Ward and L. S. Myers, Jr. Studies on the Chemical Basis of Cellular Radiosensitization by 5-Bromouracil Substitution of DNA. I. Pulse and Steady-State Radiolysis of 5-Bromouracil and Thymine. Int. J. Radiat. Biot 16: 502–523 (1969).

    Google Scholar 

  56. J. D. Zimbrick, J. F. Ward and L. S. Myers, Jr. Studies on the Chemical Basis of Cellular Radiosensitization by 5-Bromouracil Substitution of DNA. II. Pulse and Steady-State Radiolysis of Bromouracil Substituted and Unsubstituted DNA. Int. J. Radiat. Biol. 16: 524–534 (1969).

    Google Scholar 

  57. J. W. Lown. Molecular Mechanisms of Action of Anticancer Agents Involving Free Radical Intermediates. Adv. Free Radical Biol. Med. 1: 225–264 (1985).

    Article  CAS  Google Scholar 

  58. I. H. Goldberg. Atypical Abasic Sites Generated by Neocarzinostatin at Sequence Specific Cytidylate Residues in Oligodeoxynucleotides. Biochemistry 27: 4331–4340 (1988).

    Article  PubMed  Google Scholar 

  59. J. W. Boag. Summing up the Seminar. Int. J. Radiat. Oncol. Biol. Phys. 5: 1131–1134 (1979).

    Article  Google Scholar 

  60. D. Frankenberg, B. D. Michael, M. Frankenberger-Schwarger and R. Harbich. Fast Kinetics of the Oxygen Effect for DNA Double-Strand Breakage in Cell Killing in Irradiated Yeast. Int. J. Radiat. Biol. 57: 485–501 (1990).

    Article  PubMed  CAS  Google Scholar 

  61. J. B. Little. Low Dose Radiation Effects: Interactions and Synergism. Health Phys. 59: 49–56 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Ward, J.F. (1991). DNA Damage and Repair. In: Glass, W.A., Varma, M.N. (eds) Physical and Chemical Mechanisms in Molecular Radiation Biology. Basic Life Sciences, vol 58. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7627-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7627-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7629-3

  • Online ISBN: 978-1-4684-7627-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics