Skip to main content

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

In a scant few years, the ligand-stimulated turnover of phosphatidylinositol (PI) has progressed from a curious observation to a major biochemical and pharmacological enterprise. In the 1940’s, de Hevesy (see de Hevesy, 1964) introduced the use of beta-emitting radioisotopes to biochemistry, and demonstrated that the addition of 32P-labeled inorganic phosphate to tissue preparations led to highly radioactive phospholipids. In 1953, Hokin and Hokin published their seminal observation that two minor phospholipids, phosphatidylinositol (PI) and phosphatidate (PA) were selectively labeled to high specific activities in such preparations (Hokin and Hokin, 1953). Furthermore, the labeling was greatly intensified by the presence of cholinergic ligands in the incubation medium, and the stimulated labeling could be reduced to the basal level by the addition of atropine, a known antagonist of muscarinic cholinergic receptors. This latter observation was important, since it demonstrated that the stimulated labeling is indeed receptor-linked. Hence their observation constituted a biochemical “handle” into the transduction process whereby a receptor-ligand interaction on the outer leaflet of the plasma membrane is converted to an intracellular response. Over the intervening years, it became apparent that a large number of receptor-ligand interactions could be coupled to stimulated PA and PI labeling, and that they formed a class distinct from receptor-ligand interactions linked to cyclic AMP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agranoff, B. W. and Seguin, E. B., Preparation of inositol triphosphate from brain: GLC of trimethylsilyl derivative, Prep. Biochem. 4:359–366 (1974).

    Article  CAS  Google Scholar 

  • Agranoff, B. W., Murthy, P. and Seguin, E. B., Thrombin-induced phosphodiesteratic cleavage of phosphatidylinositol bisphosphate in human platelets, J. Biol. Chem. 258:2076–2078 (1983).

    CAS  Google Scholar 

  • Allison, J. H., Blisner, M. E., Holland, W. H., Hipps, P. P. and Sherman, W. R., Increased brain myo-inositol 1-phosphate in lithium-treated rats, Biochem. Biophys. Res. Commun. 71:664–670 (1976).

    Article  CAS  Google Scholar 

  • Batty, I. R., Nahorski, S. R. and Irvine, R. F., Rapid formation of inositol 1,3,4,5-tetrakisphosphate following muscarinic receptor stimulation of rat cerebral cortical slices, Biochem. J. 232:211–215 (1985).

    CAS  Google Scholar 

  • Benjamins, J. A. and Agranoff, B. W., Distribution and properties of CDP-diglyceride: Inositol transferase from brain, J. Neurochem. 16:513–527 (1969).

    Article  CAS  Google Scholar 

  • Berridge, M. J., Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J. 220:345–360 (1984).

    CAS  Google Scholar 

  • Berridge, M. J., Downes, C. P. and Hanley, M. R., Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206:587–595 (1982).

    CAS  Google Scholar 

  • Berridge, M. J., Dawson, R. M. C., Downes, C. P., Heslop, J. P. and Irvine, R. F., Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J. 212: 473–482 (1983).

    CAS  Google Scholar 

  • Connolly, T. M., Wilson, D. B., Bross, T. E. and Majerus, P. W., Isolation and characterization of the inositol cyclic phosphate products of phos-phoinositide cleavage by phospholipase C., J. Biol. Chem. 261:122–126 (1986).

    CAS  Google Scholar 

  • Cosgrove, D. J., Inositol Phosphates. Their Chemistry, Biochemistry and Physiology. Elsevier Scientific Publishing Co., New York (1980).

    Google Scholar 

  • de Hevesy, G., Some applications of isotope indicators, in Nobel Lectures. Chemistry, 1942–1946, pp. 9–41, Elsevier Publishing Company, Amsterdam (1964).

    Google Scholar 

  • Durell, J., Sodd, M. A. and Friedel, R. O., Acetylcholine stimulation of the phosphodiesteratic cleavage of guinea pig brain phosphoinositides, Life Sci. 7:363–368 (1968).

    Article  CAS  Google Scholar 

  • Eisenberg Jr., F., D-myoinositol 1-phosphate as product of cyclization of glucose 6-phosphate and substrate for a specific phosphatase in rat testis, J. Biol. Chem. 242:1375–1382 (1967).

    CAS  Google Scholar 

  • Fisher, S. K. and Agranoff, B. W., Enhancement of the muscarinic synaptosomal phospholipid labeling effect by the ionophore A23187, J. Neurochem. 37:968–977 (1981).

    Article  CAS  Google Scholar 

  • Fisher, S. K., Boast, C. A. and Agranoff, B. W., The muscarinic stimulation of phospholipid labeling is independent of its cholinergic input, Brain Res. 189:284–288 (1980).

    Article  CAS  Google Scholar 

  • Fisher, S. K., Frey, K. A. and Agranoff, B. W., Loss of muscarinic receptors and of stimulated phospholipid labeling in ibotenate-treated hippocampus, J. Neurosci. 1:1407–1413 (1981).

    CAS  Google Scholar 

  • Gispen, W. H., Leunissen, J. L. M., Oestreicher, A. B., Verkleij, A. J. and Zwiers, H., Presynaptic localization of B-50 phosphoprotein: The (ACTH)-sensitive protein kinase substrate involved in rat brain polyphosphoinositide metabolism, Brain Res. 328:381–385 (1985).

    Article  CAS  Google Scholar 

  • Grado, C. and Ballou, C. E., Myo-inositol phosphates obtained by alkaline hydrolysis of beef brain phosphoinositide, J. Biol. Chem. 236:54–60 (1961).

    CAS  Google Scholar 

  • Hokin, M. R. and Hokin, L. E., Effects of acetylcholine on phospholipides in the pancreas, J. Biol. Chem. 209:549–558 (1953).

    Google Scholar 

  • Irvine, R. F., Letcher, A. J., Lander, D. J. and Downes, C. P., Inositol trisphosphates in carbachol-stimulated rat parotid glands, Biochem. J. 223:237–243 (1984).

    CAS  Google Scholar 

  • Irvine, R. F., Letcher, A. J., Heslop, J. P. and Berridge, M. J., The inositol tris/tetrakis phosphate pathway—demonstration of inositol (1,4,5)-trisphosphate-3-kinase activity in animal tissues, Nature, in press (1986).

    Google Scholar 

  • Ishikawa, S., Maxillary chemoreceptors in the silkworm, in Olfaction and Taste 2. Wenner-Gren Center International Symposium Series, Vol. 8 (Hayashi T., ed), pp. 761–777. Pergamon Press, New York (1967).

    Google Scholar 

  • Jakinovich Jr., W. and Agranoff, B. W., The stereospecificity of the inositol receptor of the silkworm bombyx mori, Brain Res. 33:173–180 (1971).

    Article  CAS  Google Scholar 

  • Michell, R. H., Inositol phospholipids and cell surface receptor function, Biochim. Biophys. Acta 415:81–147 (1975).

    Article  CAS  Google Scholar 

  • Michell, R. H., Profusion and confusion, Nature 319:176–177 (1986).

    Article  CAS  Google Scholar 

  • Nishizuka, Y., Turnover of inositol phospholipids and signal transduction, Science 225:1365–1370 (1984).

    Article  CAS  Google Scholar 

  • Posternak, T., The Cyclitols (Lederer E., ed), Holden-Day, Inc., San Francisco, CA (1965).

    Google Scholar 

  • Raetz, C. R. H., Hirschberg, C. B., Dowhan, W., Wickner, W. T. and Kennedy, E. P., A membrane-bound pyrophosphatase in Escherichia coli catalyzing the hydrolysis of cytidine diphosphate-diglyceride, J. Biol. Chem. 247: 2245–2247 (1972).

    CAS  Google Scholar 

  • Rittenhouse, H. G., Seguin, E. B., Fisher, S. K. and Agranoff, B. W., Properties of a CDP-diglyceride hydrolase from guinea-pig brain, J. Neurochem. 36:991–999 (1981).

    Article  CAS  Google Scholar 

  • Wilson, D. B., Bross, T. E., Hoffman, S. L. and Majerus, P. W., Hydrolysis of polyphosphoinositides by purified sheep seminal vesicle phospholi-pase C enzymes, J. Biol. Chem. 259:11718–11724 (1984).

    CAS  Google Scholar 

  • Wilson, D. B., Connolly, T. M., Bross, T. E., Majerus, P. W., Sherman, W. R., Tyler, A., Rubin, L. J. and Brown, J. E., Isolation and characterization of the inositol cyclic phosphate products of polyphosphoinositide cleavage by phospholipase C. Physiological effects in permea-bilized platelets and limulus photoreceptor cells, J. Biol. Chem. 260: 13496–13501 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Agranoff, B.W. (1987). Receptor-Mediated Phosphoinositide Metabolism. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics