Skip to main content

The Serotonin-Norepinephrine Link Hypothesis of Affective Disorders: Receptor-Receptor Interactions in Brain

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

The morphological organization of central monoamine systems has suggested a functional linkage of noradrenergic and serotonergic neurons ever since Dahlstrom and Fuxe (1964) demonstrated, by means of a sensitive fluorescence method, the neuronal localization of norepinephrine (NE) and serotonin (5HT) and mapped NE and 5HT containing cell bodies and terminals in the central nervous system. These and more recent studies show that NE and 5HT neurons form monosynaptic pathways between the lower brain stem and the cerebral cortex (Dahlstrom and Fuxe, 1964; Anden et al., 1966; Moore and Bloom, 1979; Levitt and Moore, 1978; Morrison et al., 1982; Consolazione and Cuello, 1982). With the introduction of immunohistochemical techniques, it became evident that NE and 5HT containing neurons project to the entire neuraxis and, within the cerebral cortex, to all six cortical layers, though some topographical and species differences exist (Lindvall and Bjorklund, 1984; Levitt et al., 1984). Early work also indicated a high degree of catecholamine innervation of 5HT cell bodies in the raphe nuclei (Dahlstrom and Fuxe, 1964) and the existence of a 5HT innervation of NE cell bodies in the locus coeruleus (Pickel et al., 1975). The details of the monoaminergic pathways in the central nervous system have been authoritatively reviewed (Jacobowitz, 1978; Moore and Bloom, 1979; Consolazione and Cuello, 1982). As pointed out by Fuxe et al. (1978), there is little doubt that the 5HT and NE neurons are linked together neuroanatomically and that they influence one another at various points on the neural axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Affolter, H., Erne, P., Burgisser, E. and Pletscher, A., Ca++ as a messenger of 5HT receptor stimulation in human blood platelets, Naunyn-Schmiede-berg’s 2 Arch. Pharmacol, 325: 337–342 (1984).

    Article  CAS  Google Scholar 

  • Anden, N. E., Dahlstrom, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U., Ascending monoamine neurons to the telencephanon and diencephalon, Acta physiol. Scand. 67: 313–326 (1966).

    Article  CAS  Google Scholar 

  • Barbaccia, M. L., Brunello, N., Chuang, D. M. and Costa, E., On the mode of action of imipramine: Relationship between serotonergic axon terminal function and down-regulation of beta adrenergic receptors, Neuropharmacology 22: 373–383 (1983).

    Article  CAS  Google Scholar 

  • Berridge, M. J., Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212: 849–858 (1983).

    CAS  Google Scholar 

  • Berridge, M. J., Inositol trisphosphate and diacylglycerol as second messengers, Biochem. J., 220: 345–360 (1984).

    CAS  Google Scholar 

  • Berridge, M. J., Dawson, C., Downes, C. P., Heslop, J. P. and Irvine, R. K., Changes in the levels of inositol phosphates after agonist-dependent hydrolysis of membrane phosphoinositides, Biochem. J. 212: 473–482 (1983).

    CAS  Google Scholar 

  • Berridge, M. J., Downes, P. C. and Hanely, M. R., Lithium amplifies agonistdependent phosphatidylinositol responses in brain and salivary glands, Biochem. J. 206: 587–595 (1982).

    CAS  Google Scholar 

  • Brunello, N., Chuang, D. M., Costa, E., Use of specific brain lesions to study the site of action of antidepressants, Adv. Biosc. 40: 141–145 (1982).

    CAS  Google Scholar 

  • Brunello, N., Volterra, A., Cagiano, R., Ianieri, G. C., Cuomo, V. and Racagni, G., Biochemical and behavioral changes in rats after prolonged treatment with desipramine: Interaction with p-chlorophenylalanine, Naunyn-Schmiedeberg’s Arch. Pharmacol. 331: 20–22 (1985).

    Article  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E., Selective 5HT2 antagonists inhibit serotonin stimulated phosphatidylinositol metabolism in cerebral cortex, Neuropharmacology 23: 993–996 (1984).

    Article  CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E., Serotonin-stimulated phosphoinositide turnover: mediation by the S2 binding site in rat cerebral cortex but not in subcortical regions, J. Pharmacol. Exp. Ther. 234: 195–203 (1985).

    CAS  Google Scholar 

  • Conn, P. J. and Sanders-Bush, E., Regulation of serotonin stimulated phosphoinositide hydrolysis: Relation to the serotonin 5HT2 binding site, J. Neurosci. (submitted) (1986a).

    Google Scholar 

  • Conn, P. J. and Sanders-Bush, E., Agonist induced phosphoinositide hydrolysis in rat choroid plexus, J. Neurochem. (submitted) (1986b).

    Google Scholar 

  • Conn, P. J., Sanders-Bush, E., Hoffman, B. J. and Hartig, P. R., A unique serotonin receptor in choroid plexus is linked to phosphoinositide hydrolysis, Proc. Natl. Acad. Sci., in press (1986).

    Google Scholar 

  • Consolazione, A. and Cuello, A. C., CNS serotonin pathways, In: Biology of serotonergic transmission, N. N. Osborne, ed., pp. 29–61, John Wiley and Sons, Ltd., Baffius Lane, England (1982).

    Google Scholar 

  • Coppen, A. and Wood, K., 5-Hydroxytryptamine in the pathogenesis of affective disorders, Adv. Biochem. Psychopharmacol. 34: 249–258 (1982).

    CAS  Google Scholar 

  • Crook, R. B., Farber, M. B. and Prusiner, S. B., Hormone and neurotransmitters control cyclic AMP metabolism in choroid plexus epithelial cells, J. Neurochem. 42: 340–350 (1984).

    Article  CAS  Google Scholar 

  • Dahlstrom, A. and Fuxe, K., Evidence for the existence of monoamine-containing neurons in the central nervous system I. Demonstration of monoamines in the cell bodies of brain stem neurons, Acta. Physiol. Scand. 62 (Suppl. 232): 1–55 (1964).

    Google Scholar 

  • de Chaffoy de Courcelles, D., Roevens, P. and Van Belle, H., Stimulation by serotonin of 40 KDa and 20 KDa protein phosphorylation in human platelets, FEBS Lett. 171: 289–292 (1984).

    Article  Google Scholar 

  • de Chaffoy de Courcelles, D., Leysen, J. E., de Clerck, F., Van Belle, H. and Janssen, P. A. J., Evidence that phospholipid turnover is the signal transducing system coupled to serotonin-S2 receptor sites, J. Biol. Chem. 260: 7603–7608 (1985).

    Google Scholar 

  • Dumbrille-Ross, A. and Tang, S. W., Noradrenergic and serotonergic input necessary for imipramine induced changes in beta but not S2 receptor densities, Psychiatry Res. 9: 207–215 (1983).

    Article  CAS  Google Scholar 

  • Fuxe, K., Hokfelt, T., Agnati, L. F., Johansson, O., Goldstein, M., Perez de la Mora, M., Possami, L., Tapia, R., Teran, L. and Palacios, R., Mapping out central catecholamine neurons: Immunohistochemical studies on catecholamine-synthesizing enzymes. In: Psychopharmacology: A generation of progress, M. A. Lipton, A. DiMascio, K. K. Killam, eds. pp. 67–94, Raven Press, NY, NY (1978).

    Google Scholar 

  • Gilbert, R. F. T., Bennett, G. W., Marsden, C. A. and Emson, P. C., The effects of 5-hydroxytryptamine depleting drugs on peptides in the ventral spinal cord, Europ. J. Pharmacol. 76: 203–210 (1981).

    Article  CAS  Google Scholar 

  • Harden, T. K., Agonist-induced desensitization of the beta adrenergic receptor-linked adenylate cyclase. Pharmacol. Rev. 35: 5–32 (1983).

    CAS  Google Scholar 

  • Hegstrand, L. R., Minneman, K. P. and Molinoff, P. B., Multiple effects of guanosine triphosphate on beta adrenergic receptors and adenylate cyclase activity in rat heart, lung and brain, J. Pharmacol. Exp. Ther. 210: 215–221 (1979).

    CAS  Google Scholar 

  • Hirasawa, K. and Nishizuka, Y., Phosphatidylinositol turnover in receptor mechanisms and signal transduction, Ann. Rev. Pharmacol. Toxicol. 25: 147–170 (1985).

    Article  CAS  Google Scholar 

  • Hirata, F. and Axelrod, J., Phospholipid methylation and the transmission of biological signals through membranes, Science 209: 1082–1090 (1980).

    Article  CAS  Google Scholar 

  • Jacobowitz, D. M., Monoaminergic pathways in the central nervous system, In: Psychopharmacology: A generation of progress, M. A. Lipton, A. DiMascio, K. K. Killam, eds., pp. 119–129, Raven Press, New York, NY (1978).

    Google Scholar 

  • Janowsky, A., Okada, F., Manier, D., Applegate, C. D. and Sulser, F., Role of serotonergic input in the regulation of the beta-adrenergic receptorcoupled adenylate cyclase system, Science 218: 900–901 (1982).

    Article  CAS  Google Scholar 

  • Kendall, D. A. and Nahorski, S. R., 5-hydroxytryptamme stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: Pharmacological characterization and effects of antidepressants, J. Pharmaco. Exper. Therap. 233: 473–479 (1985).

    CAS  Google Scholar 

  • Levitt, P. and Moore, R. Y., Noradrenaline neuron innervation of the neurocortex in the rat, Brain Res. 139: 219–232 (1978).

    Article  CAS  Google Scholar 

  • Levitt, P., Rakic, P. and Goldman-Rakic, P. S., Comparative assessment of monoamine afferents in mammalian cerebral cortex, Neurology and Neurobiology 10: 41–59 (1984).

    CAS  Google Scholar 

  • Lindvall, O. and Bjorkluna, A., General organization of cortical monoamine systems, Neurology and Neurobiology 10: 9–40 (1984).

    CAS  Google Scholar 

  • Maeda, K., Monoaminergic effect on cerebrospinal fluid production, Nihon Univ. J. Med. 25: 155–174 (1983).

    CAS  Google Scholar 

  • Manier, D. H., Gillespie, D. D., Steranka, L. R. and Sulser, F., A pivotal role for serotonin in the down-regulation of beta-adrenoceptors by antidepressants: Reversibility of the action of p-chlorophenylaianine (PCPA) by 5-hydroxytryptophan, Experientia 40: 1223–1226 (1984).

    Article  CAS  Google Scholar 

  • Manier, D. H., Gillespie, D. D., Sanders-Bush, E. and Sulser, F., The serotonin/noradrenaline-link in brain: I. The role of noradrenaline and serotonin in tne regulation of density and function of beta adrenoceptors and its alteration by DMI, Naunyn-Schmiedeberg’s Arch. Pharmacol. submitted (1986).

    Google Scholar 

  • Mendlewicz, J. and Youdim, M. B. H., Antideprebsant potentiation of 5-hy-droxytryptophan by 1-deprenyl in affective illness, J. Affect. Disord. 2: 137–146 (1980).

    Article  CAS  Google Scholar 

  • Mobley, P. L., Manier, D. H. and Sulser, F., Norepinephrine-sensitive adenylate cyclase system in rat brain: Role of adrenal corticosteroids, J. Pharmacol. Exp. Ther. 226: 71–77 (1983).

    CAS  Google Scholar 

  • Moore, R. Y., Bloom, F. E., Central catecholamine neuron systems: Anatomy and physiology of the norepinephrine and epinephrine systems, Ann. Rev. Neurosci. 2: 113–168 (1979).

    Article  CAS  Google Scholar 

  • Morrison, J. H., Foote, S. L., Molliver M. E., Bloom, F. E. and Lidov, H. G. W., Noradrenergic and serotonergic fibers innervate complementary layers in monkey primary visual cortex: An immunohistochemical study, Proc. Natl. Acad. Sci. USA 79: 2401–2405 (1982).

    Article  CAS  Google Scholar 

  • Nathanson, J., Beta-adrenergic sensitive adenylate cyclase in secretory cells of choroid plexus, Science 204: 843–844 (1979).

    Article  CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P., Protein phosphorylation in brain. Nature 305: 583–588 (1983).

    Article  CAS  Google Scholar 

  • Nestler, E. J., Walaas, S. T. and Greengard, P., Neuronal phosproteins: Physiological and clinicax implications, Science 225: 1557–1364 (1984).

    Article  Google Scholar 

  • Nimgaonkar, V. L., Goodwin, G. M., Davies, C. L. and Green, A. R., Downregulation of beta-adrenoceptors in rat cortex by repeated administration of desipramine, electroconvulsive shock and clembuterol requires 5HT neurones but not 5HT, Neuropharmacology 24: 279–285 (1985).

    Article  CAS  Google Scholar 

  • O’Donnell, J. M. and Frazer, A., Effects of clenbuterol and tricyclic antidepressants on beta-adrenergic receptor/N-protein coupling in rat cerebral cortex, Fed. Proc. 43: 839 (1984).

    Google Scholar 

  • Okada, F., Tokumitsu, Y. and Ui, M., Desensitization of beta adrenergic receptor coupled adenylate cyclase in cerebral cortex after treatment in vivo of rats with desipramine, J. Neurochem. in press (1986).

    Google Scholar 

  • Pazos, A., Hoyer, D. and Palacios, J. M., The binding of serotonergic ligand to the porcine choroid plexus: Characterization of a new type of serotonin recognition site, Europ. J. Pharmacol. 106: 539–546 (1984).

    Article  CAS  Google Scholar 

  • Pickel, V. M., Joh, T. H., Field, P. M., Becker, C. G. and Reis, D. J., Cellular localization of tyrosine hydroxylase by immunohistochemistry, J. Histochem. Cytochem. 23: 1–12 (1975).

    Article  CAS  Google Scholar 

  • Roth, B. L., Nakaki, T., Chuang, D. M., Chemow, B. and Costa, E., Characterization of 5HT2 receptors linked to phospholipase C in rat aorta, Fed. Proc. 44: 1244 (1985).

    Google Scholar 

  • Roth, B. L., Nakaki, T., Chuang, D. M. and Costa, E., Aortic recognition sites for serotonin (5HT) are coupled to phospholipase C and modulate phosphatidylinositol turnover, Neuropharmacology 23: 1223–1225, (1984).

    Article  CAS  Google Scholar 

  • Shopsin, B., Friedman, E. and Gershon, S., The use of synthesis inhibitors in defining a role for biogenic amines during imipramine treatment in depressed patients, Psychopharmacol. Comm. 1: 239–249 (1975).

    CAS  Google Scholar 

  • Shopsin, B., Friedman, E. and Gershon, S., Parachlorophenylalanine reversal of tranylcypromine effects in depressed patients, Arch. Gen. Psych. 33: 811–819 (1976).

    Article  CAS  Google Scholar 

  • Stockmeier, C. A., Martino, A. M. and Kellar, K. J., A strong influence of serotonin axons on beta-adrenergic receptors in rat brain, Science 230: 323–325 (1985).

    Article  CAS  Google Scholar 

  • Sulser, F., Noraderenergic receptor regulation and the action of antidepressants. In “Depression and Antidepressants — Recent Events, pp. 24–36, excerpta Medica, Amsterdam (1983).

    Google Scholar 

  • Sulser, F., The serotonin-noradrenaline link-hypothesis of affective disorders, in: Psychiatry, vol. 2, Eds. P. Pichot, P. Berner, R. Wolf and K. Thau, Plenum Publishing Corporation, pp. 411–416 (1985).

    Google Scholar 

  • Sulser, F., Conn, P. J., Zawad, J. S. and Sanders-Bush, E., Molecular aspects of altered transmembrane regulation of the noradrenaline signal by antidepressants, Benzon Symposium on Drug Action, Copenhagen, in press (1986).

    Google Scholar 

  • Van Praag, H. M., Serotonin precursors in the treatment of depression, Adv. Biochem. Psychopharmacol. 34: 259–286 (1982).

    Google Scholar 

  • Whybrow, P. and Mendels, J., Toward a biology of depression: Some suggestions from neurophysiology, Amer. J. Psychiatry 125: 45–54 (1969).

    Google Scholar 

  • Yagaloff, K. A. and Hartig, P. R., [125T]-LSD binds to a novel serotonergic site on rat choroid plexus epithelial cells, J. Neurosci. 5: 3178–3183 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Sulser, F., Sanders-Bush, E. (1987). The Serotonin-Norepinephrine Link Hypothesis of Affective Disorders: Receptor-Receptor Interactions in Brain. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics