Skip to main content

Chemoreception: Paramecium as a Receptor Cell

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

In the sensory modalities of taste, smell and common chemical sense, there are receptor cells that make contact with the external environment and detect the presence of external chemical stimuli. The receptor cell is the site of stimulus recognition, which is thought to be mediated through binding of the stimulus to specific surface receptors and then transduction of this binding into “useful” electrical information. Information in this new form is passed on to higher order neurons and eventually is translated into a response. In order to study receptor cell function, it seems straightforward to isolate these receptor cells, identify the receptors among the membrane proteins and determine the ionic basis of receptor binding by conventional electrophysiology. However, there are limitations inherent in many of the chemosensory systems traditionally used to study chemoreception. Relatively small amounts of olfactory or taste epithelium limit the binding studies and biochemical studies necessary to identify receptor proteins; tissue is often of a mixed cell type, even when avaiable in quantity, making it difficult to be sure of the origins of putative receptor proteins (Price, 1981; Mooser, 1981; Cagan, 1981). Hence, indirect methods (e.g. treating the tissue with n-ethyl-maleimide to disrupt protein sulfhydryl bonds, and hence disrupting the chemoresponse, or demonstrating specificity and saturability of a response) are used to demonstrate that the receptor site is a protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge, M. J. and Irvine, R. F., Inositol triphosphate, a novel second messenger in cellular signal transduction, Nature 312: 315 (1984).

    Article  CAS  Google Scholar 

  • Bignetti, E., Cavaggioni, A., Pelosi, P., Persaud, K., Sorbi, R. and Tirindelli, R., Purification and characterization of an odorant-binding protein from cow nasal tissue, Eur. J. Biochem. 149: 227 (1985).

    Article  CAS  Google Scholar 

  • Cagan, R., Recognition of taste stimuli at the initial binding interaction, in: “Biochemistry of Taste and Olfaction,” R. Cagan and M. Kare, eds., Nutrition Foundation, Academic Press, NY (1981).

    Google Scholar 

  • DiNallo, M., Wohlford, M. and Van Houten, J., Mutants of Paramecium defective in chemokinesis to folate, Genetics 102: 149 (1982).

    CAS  Google Scholar 

  • Dunlap, K., Localization of calcium channels in Paramecium caudatum, J. Physiol. 271: 119 (1977).

    CAS  Google Scholar 

  • Eckert, R., Bioelectric control of cilia, Science 176: 473 (1972).

    Article  CAS  Google Scholar 

  • Gerisch, G., Chemotaxis in Dictyostelium, Ann. Rev. Physiol. 44: 535 (1982).

    Article  CAS  Google Scholar 

  • Gustin, M., Bonini, N. and Nelson, D., Membrane potential regulation of cAMP: control mechanism for swimming behavior in the ciliate Paramecium, Soc. Neurosci. Abstr. 9: 167 (1983).

    Google Scholar 

  • Hansen, K. and Wieczorek, H., Biochemical aspects of sugar reception in insects, in: “Biochemistry of Taste and Olfaction,” R. Cagan and M. Kare, eds., Nutrition Foundation, Academic Press, New York, (1981).

    Google Scholar 

  • Hazelbauer, G. and Harayama, S., Sensory transduction in bacterial Chemotaxis, Int. Rev. cytol. 81: 33 (1983).

    Article  CAS  Google Scholar 

  • Henderson, G. and Zevely, E., Affinity 1abeling of the 5-methyl-tetrahydrofolate/methotrexate transport of protein by L1210 cells by treatment with an N-hydroxysuccinimide ester of methotrexate, J. Biol. Chem. 259: 4558 (1984).

    CAS  Google Scholar 

  • Huang, B., Ramanis, Z. and Luck, D. J. L., Suppressor mutations in Chlamydomonas reveal a regulatory mechanism for flagellar function, Cell 28: 115 (1982).

    Article  CAS  Google Scholar 

  • Hennessey, T., Machemer, H. and Nelson, D., Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization, Eur. J. Cell. Biol. 36: 153 (1985).

    CAS  Google Scholar 

  • Hum, B. and Chantler, S. M., Production of reagent antibodies, Meth. Enz. 70: 104 (1980).

    Article  Google Scholar 

  • Kung, C. and Saimi, Y., The physiological basis of taxes in Paramecium, Ann. Rev. Physiol. 44: 519 (1982).

    Article  CAS  Google Scholar 

  • Lancet, D., Vertebrate olfactory reception, Ann. Rev Neurosci. 9: 329 (1986).

    Article  CAS  Google Scholar 

  • Langone, J., Radioimmunoassay of methotrexate, leucovorin, and 5-methyltetrahydrofolate, Meth. Enz. 84: 409 (1982).

    Article  CAS  Google Scholar 

  • Leick, V. and Hellung-Larsen, P., Chemotaxis in Tetrahymena: the involvement of peptides and other signal substances, J. Protozool. 32: 550 (1985).

    CAS  Google Scholar 

  • Levandowsky, M., Chang, T., Kehr, A, Kim, J., Gardner, L., Tsang, L., Lai, G., Chung, C. and Prakash, E., Chemosensory responses to amino acids and certain amines by the ciliate Tetrahymena: a flat capillary assay, Biol. Bull. 167: 322 (1984).

    Article  CAS  Google Scholar 

  • Machemer, H. and dePeyer, J., Swimming sensory cells: electrical membrane parameters, receptor properties and motor control in ciliated protozoa, Verh. Drsch. Zool. Ges. 1977: 86 (1977).

    Google Scholar 

  • Margolis, F. L., Sydor, W., Teitelbaum, Z., Blacher, R., Grillo, M., Rogers, K., Sun, R. and Gubler, U., Molecular biological approaches to the olfactory system: olfactory marker protein as a model, Chem. Senses 10: 163 (1985).

    Article  CAS  Google Scholar 

  • Naitoh, Y., Protozoa, in: “Electrical Conduction and Behavior in’ simple’ Invertebrates,” G. A. B. Shelton, ed., Clarendon Press, Oxford (1982).

    Google Scholar 

  • Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumour promotion, Nature 308: 693 (1984a).

    Article  CAS  Google Scholar 

  • Nishizuka, Y., Turnover of inositol phospholipids and signal transduction, Science 225: 1365 (1984b).

    Article  CAS  Google Scholar 

  • Ogura, A. and Machemer, H., Distribution of mechanoreceptor channels in the Paramecium surface membrane, J. Comp. Physiol. 135: 233 (1980).

    CAS  Google Scholar 

  • Price, S., Receptor proteins in vertebrate olfaction, in: “Biochemistry of Taste and Olfaction”, R. Cagan and M. Kare, eds., Academic Press, NY, (1981).

    Google Scholar 

  • Preston, R. R. and Van Houten, J. L., Localization of the chemoreceptive properties of the surface membrane of Paramecium tetraurelia, J. Comp. Physiol. in press (1986).

    Google Scholar 

  • Preston, R. R. and Van Houten, J. L., Chemoreception in Paramecium tetraurelia: folate and acetate-induced membrane hyperpolarization, J. Comp. Physiol. submitted (1986).

    Google Scholar 

  • Rink, T. and Pozzan, T., Using Quin2 in cell suspensions, Cell Calcium 6: 133 (1985).

    Article  CAS  Google Scholar 

  • Satow, Y. and Kung, C., Possible reduction of surface charge by a mutation in Paramecium tetraurelia, J. Membr. Biol. 59: 179 (1981).

    CAS  Google Scholar 

  • Schultz, J., Grünemund, R., von Hirschausen, R. and Schonfeld, U., Ionic regulation of cAMP levels in Paramecium tetraurelia, Febs. Lett. 167: 113 (1984).

    Article  CAS  Google Scholar 

  • Schulz, S., Denaro, M., Xypolyta-Bulloch, A. and Van Houten, J., Relationship of folate binding to chemoreception in Paramecium, J. Comp. Physiol. 155: 113 (1984).

    Article  CAS  Google Scholar 

  • Schulz, S., Sasner, J. M. and Van Houten, J., In search of the folate chemoreceptor, J. Cell Biol. 101: 302a (1985a).

    Google Scholar 

  • Schulz, S., Preston, R. and Van Houten, J., Characterization of putative Paramecium chemoreceptors, Chem. Senses 10: in press (1985b).

    Google Scholar 

  • Schulz, S., Sasner, J. M. and Van Houten, J., Folate binding proteins of the Paramecium surface membrane, Biochim. Biophys. Acta submitted (1986).

    Google Scholar 

  • Smith, R., Gagnon, M. L., Preston, R. R., Schulz, S. and Van Houten, J., Correlation between cAMP binding and chemoreception in Paramecium, J. Comp. Physiol. submitted (1986).

    Google Scholar 

  • Stryer, L., Cyclic GMP cascade of vision, Ann. Rev. Neurosci. 9: 87 (1986).

    Article  CAS  Google Scholar 

  • Towbin, H., Staehelin, T. and Gordon, J., Electrophoretic transfer of proteins from Polyacrylamide gels to nitrocellulose sheets: procedure and some applications, Proc. Natl. Acad. Sci. (USA) 76: 4350 (1979).

    Google Scholar 

  • Tsien, R., Pozzan, T. and Rink, T., Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator, J. Cell Biol. 94: 325 (1982).

    Article  CAS  Google Scholar 

  • Van Houten, J., A mutant of Paramecium defective in Chemotaxis, Science 198: 746 (1977).

    Article  Google Scholar 

  • Van Houten, J., Two mechanisms of Chemotaxis in Paramecium, J. Comp. Physiol. 127: 167 (1978).

    Article  Google Scholar 

  • Van Houten, J., Membrane potential changes during chemokinesis in Paramecium, Science 204: 1100 (1979).

    Article  Google Scholar 

  • Van Houten, J. and Preston, R. R., Effects of amiloride on Paramecium chemoresponse, Chem. Senses 10: in press (1985).

    Google Scholar 

  • Van Houten, J. and Van Houten, J., Computer analysis of Paramecium chemokinesis behavior, J. Theor. Biol. 98: 453 (1982).

    Article  Google Scholar 

  • Van Houten, J., Martel, E. and Kasch, T., Kinetic analysis of chemokinesis of Paramecium, J. Protozool. 29: 226 (1982).

    Google Scholar 

  • Van Houten, J., Schulz, S. and Denaro, M., Characterization and location of folate binding sites involved in Paramecium chemoreception, J. Cell Biol. 97: 469a (1983).

    Google Scholar 

  • Van Houten, J., Wymer, J., Cushman, M. and Preston, R. R., Effects of Sadenosyl-L-methionine on chemoreception in P. tetraurelia, J. Cell Biol. 99: 242a (1984).

    Google Scholar 

  • Van Houten, J., Smith, R., Wymer, J., Palmer, B. and Denaro, M., Fluorescein conjugated folate as an indicator of specific folate binding to Paramecium, J. Protozool. 32: 613 (1985).

    Google Scholar 

  • Van Houten, J., Preston, R. R., Schulz, S., Sasner, J. M. and Smith, R., Chemoreceptors of Paramecium, Soc. Neurosci. Abstr. 12: in press (1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Van Houten, J., Preston, R.R. (1987). Chemoreception: Paramecium as a Receptor Cell. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics