Skip to main content

Electrophysiologic Responses and Adenylate Cyclase Activities of Mouse Spinal Cord-Dorsal Root Ganglion Explants Rendered Tolerant by Chronic Exposure to Morphine or Pertussis Toxin

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

Explant cultures of fetal mouse spinal cord with attached dorsal-root ganglia (DRGs) (Fig. 1: Crain 1976) provide a valuable in vitro system for study of neurotransmitter modulation in the CNS. We have previously developed and utilized this system extensively for analysis of the actions of opioids on the electrophysiologic responses of these neurons and for study of the development of tolerance to opioid depressant effects (see review by Crain, 1984). Exposure of fetal mouse spinal cord-DRG explants to opioid alkaloid or peptide agonists resulted in stereospecific, naloxone-reversible, dose-dependent depression of sensory-evoked dorsal-horn synaptic-network responses within a few minutes (e.g. Fig. 2A; Crain et al., 1977, 1978). After chronic exposure to opioids, e.g. 2–3 days in 1 μM morphine (at 35°C), sensory-evoked dorsal-horn responses recovered, and they could then be elicited by DRG stimuli in the presence of opioids at concentrations 10- to 100-fold higher than required to depress a naive expiant (Fig. 2B; (Crain et al., 1979). In addition, these opioid-tolerant explants developed significant cross-tolerance to serotonin (5HT) (Crain et al., 1982). The tolerant state did not develop if the explants were exposed to morphine at lower temperatures (e.g. 20°C for as long as 7 days; Fig. 2C). The data suggest that the sustained decrease in opioid sensitivity observed during chronic opioid exposure at 35°C is mediated by a temperature-dependent metabolic change in these neurons (Crain et al., 1979; Crain, 1984).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berridge, M. J. and Irvine, R. F., Inositol trisphosphate, a novel second messenger in cellular signal transduction, Nature, 312: 315–321 (1984).

    Article  CAS  Google Scholar 

  • Blume, A. J., Licktenstein, D. and Boone, G., Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP, Proc. Natl. Acad.Sci. USA, 76: 5626–5630 (1979).

    Article  CAS  Google Scholar 

  • Bogoch, G. M., Katada, T., Northup, J. K., Ui, M. and Gilman, A. G., Purification and properties of the inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase, J. Biol. Chem., 259: 3560–3567 (1984).

    Google Scholar 

  • Chalazonitis, A., Groth, J., Simon, E. J. and Crain, S. M., Development of met-enkephalin immunoreactivity in organotypic explants of fetal mouse spinal cord and attached dorsal root ganglia, Devel. Brain Res. 12: 183–189 (1984).

    Article  CAS  Google Scholar 

  • Collier, H. O. J., Cellular site of opiate dependence, Nature (London), 283: 625–629 (1980).

    Article  CAS  Google Scholar 

  • Cooper, D. F. M., Londos, C., Gill, D. L. and Rodbell, M., Opiate receptormediated inhibition of adenylate cyclase in rat striatal membranes, J. Neurochem., 38: 1164–1167 (1982).

    Article  CAS  Google Scholar 

  • Crain, S. M., Neurophysologic Studies in Tissue Culture, Raven Press, New York (1976).

    Google Scholar 

  • Crain, S. M., Role of CNS target cues in formation of specific afferent synaptic connections in organotypic cultures. In: Neuroscience Approached Through Cell Culture, Vol. II, S. E. Pfeiffer, ed., CRC Press, Florida, pp. 1–32 (1882).

    Google Scholar 

  • Crain, S. M., Spinal cord tissue culture models for analyses of opioid analgesia, tolerance and plasticity, in Mechanisms of Tolerance and Dependence, C. Sharp, Ed., National Institute on Drug Abuse Research Monograph, U.S. Govt. Printing Office (ADM 84-1330), Washington, D.C., pp. 260–292 (1984).

    Google Scholar 

  • Crain, S. M. and Peterson, E. R., Enhanced afferent synaptic functions in fetal mouse spinal cord-sensory ganglion explants following NGF-induced ganglion hypertrophy, Brain Research, 79: 145–152 (1974).

    Article  CAS  Google Scholar 

  • Crain, S. M., Crain, B., Finnigan, T. and Simon, E. J., Development of tolerance to opiates and opioid peptides in organotypic cultures of mouse spinal cord, Life Sci., 25: 1797–1802 (1979).

    Article  CAS  Google Scholar 

  • Crain, S. M., Crain, B. and Makman, M. H., Pertussis toxin blocks depressant effects of opioid, monoaminergic and muscarinic agonists on dorsal-horn network responses in spinal cord-ganglion cultures, (subm. for publ.) (1986b).

    Google Scholar 

  • Crain, S. M., Crain, B., Peterson, E. R. and Simon, E. J., Selective depression by opioid peptides of sensory-evoked dorsal-horn network responses in organized spinal cord cultures, Brain Research, 157: 191–201 (1978).

    Article  Google Scholar 

  • Crain, S. M., Crain, B. and Peterson, E. R., Development of cross-tolerance to 5-hydroxytryptamine in organotypic cultures of mouse spinal cordganglia during chronic exposure to morphine, Life Sci., 31: 241–247 (1982).

    Article  CAS  Google Scholar 

  • Crain, S. M., Crain, B. and Peterson, E. R., Cyclic AMP or forskolin produces rapid “tolerance” to the depressant effects of opiates on sensory-evoked dorsal-horn responses in spinal cord-dorsal root ganglion (DRG) explants, Soc. Neurosci. Abstr., 10: 111 (1984).

    Google Scholar 

  • Crain, S. M., Crain, B. and Peterson, E. R., Cyclic AMP or forskolin rapidly attenuates the depressant effects of opioids on sensory-evoked dorsalhorn responses in mouse spinal cord-ganglion explants, Brain Res., 370: 61–72 (1986a).

    Article  CAS  Google Scholar 

  • Crain, S. M., Peterson, E. R., Crain, B. and Simon, E. J., Selective opiate depression of sensory-evoked synaptic networks in dorsal-horn regions of spinal cord cultures, Brain Research, 133: 162–166 (1977).

    Article  CAS  Google Scholar 

  • Crain, S. M., Shen, K. E. and Chalazonitis, A., Altered pharmacologic sensitivities of opioid-sensitive dorsal root ganglion (DRG) neurons rendered hyperexcitable by exposure of DRG-cord explants to forskolin or pertussis toxin. In N. Chalazonitis (ed.), Inactivation of Hypersensitive Neurones, in press (1986c).

    Google Scholar 

  • Dvorkin, B., Crain, S. M. and Makman, M. H., Increased adenylate cyclase activity in mouse spinal cord-dorsal root ganglion (DRG) explants rendered tolerant by chronic exposure to morphine, Soc. Neurosci. Abstr., 11: 1198 (1985).

    Google Scholar 

  • Gentleman, S., Parenti, M., Neff, N. H. and Pert, C. B., Inhibition of dopamine-activated adenylate cyclase and dopamine binding by opiate receptors in rat striatum, Cell. Mol. Neurobiol., 3: 17–26 (1983).

    Article  CAS  Google Scholar 

  • Gilman, A. G., G proteins and dual control of adenylate cyclase, Cell, 36: 577–579 (1984).

    Article  CAS  Google Scholar 

  • Hiller, J. M., Simon, E. J., Crain, S. M. and Peterson, E. R., Opiate receptors in cultures of fetal mouse dorsal root ganglia (DRG) and spinal cord: predominance in DRG neurites, Brain Research, 145: 396–400 (1978).

    Article  CAS  Google Scholar 

  • Holz, G. G., Rane, S. G. and Dunlap, K., GTP-binding proteins mediate transmitter inhibition of voltage-dependent calcium channels, Nature, 319: 670–672 (1986).

    Article  CAS  Google Scholar 

  • Hsia, J., Moss, J., Hewlett, E. L. and Vaughan, M., ADP-ribosylation of adenylate cyclase by pertussis toxin, J. Biol. Chem., 259: 1086–1090 (1984).

    CAS  Google Scholar 

  • Jakobs, K. H., Aktories, K. and Schultz, G., Inhibition of adenylate cyclase by hormones and neurotransmitters, Adv. Cyclic Nucleotide Res., 14: 173–187 (1981).

    CAS  Google Scholar 

  • Katada, T. and Ui, M., Direct modification of the membrane adenylate cyclase system by islet activating protein due to ADP-ribosylation of a membrane protein, Proc. Nat. Acad. Sci. USA, 79: 3129–3133 (1982).

    Article  CAS  Google Scholar 

  • Klee, W. A., Milligan, G., Simonds, W. F. and Tocque, B., The role of adenyl cyclase in opiate tolerance and dependence, in Mechanisms of Tolerance and Dependence, C. Sharp, ed., U. S. Govt. Printing Office (ADM 84-1330). Washington, D.C., pp. 109–118 (1984).

    Google Scholar 

  • Kurose, H., Katada, T., Amano, T. and Ui, M., Specific uncoupling by isletactivating protein, pertussis toxin, of negative signal transduction via α-adrenergic, cholinergic, and opiate receptors in neuroblastoma x glioma hybrid cells, J. Biol. Chem., 258: 4870–4875 (1983).

    CAS  Google Scholar 

  • Law, P. Y., Wu, J., Koehler, J. E. and Loh, H. H., Demonstration and characterization of opiate inhibition of the striatal adenylate cyclase, J. Neurochem., 36: 1834–1846 (1981).

    Article  CAS  Google Scholar 

  • Lichtenstein, D., Boone, G. and Blume, A., Muscarinic receptor regulation of NG108-15 adenylate cyclase: requirement for Na and GTP, J. Cyclic Nucleotide Res., 5: 367–375 (1979).

    Google Scholar 

  • Lujan, M., Lopez, E. Ramirez, R., Aguilar, H., Martinez-Olmedo, M. A. and Garcia-Sainz, J. A., Pertussis toxin blocks the action of morphine, norepinephrine and Clonidine on isolated guinea-pig ileum, Eur. J. Pharmacol., 100: 377–380 (1984).

    Article  CAS  Google Scholar 

  • McLawhon, R. W., Schoon, G. S. and Dawson, G., Possible role of cyclic AMP in the receptor-mediated regulation of glycosyltransferase activated in neurotumor cell lines, J. Neurochem., 37: 132–139 (1981a).

    Article  CAS  Google Scholar 

  • McLawhon, R. W., West Jr., R. E., Miller, R. J. and Dawson, G., Distinct high-affinity binding sites for benzomorphan drugs and enkephalin in a neuroblastoma-brain hybrid cell line, Proc. Natl. Acad. Sci., USA, 78: 4309–4313 (1981b).

    Article  CAS  Google Scholar 

  • Makman, M. H., Dvorkin, B. and Klein, P. N., Sodium ion modulates D2 receptor characteristics of dopamine agonist and antagonist binding sites in striatum and retina, Proc. Natl. Acad. Sci. USA, 79: 4212–4216 (1982).

    Article  CAS  Google Scholar 

  • Michael, T., Hoffman, B. B. and Lefkowitz, R. J., Differential regulation of the α2-adrenergic receptor by Na+ and guanine nucleotides, Nature (Lond.), 288: 709–711 (1983).

    Article  Google Scholar 

  • Miller, R. J., Second messengers, phosphorylation and neurotransmitter release, Trends in Neurosci., 8: 462–465 (1985).

    Google Scholar 

  • Pfaffinger, P. J., Martin, J. M., Hunter, D. D., Nathanson, N. M. and Hille, B., GTP-binding proteins couple cardiac muscarinic receptors to a K channel, Nature, 317: 536–538 (1985).

    Article  CAS  Google Scholar 

  • Rodbell, M., Structure-function problems with the adenylate cyclase system, Adv. Cyclic Nucleotide Res., 17: 207–214 (1984).

    CAS  Google Scholar 

  • Seamon, K. B. and Daly, J. W., Forskolin: a unique diterpene activator of cyclic AMP-generating systems, J. Cyclic Nucleot. Res., 7: 201–224 (1981).

    CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A. and Nirenberg, M., Dual regulation of adenylate cyclase accounts for narcotic dependence and tolerance, Proc. Natl. Acad. Sci. USA, 72: 3092–3096 (1975a).

    Article  CAS  Google Scholar 

  • Sharma, S. K., Nirenberg, M. and Klee, W. A., Morphine receptors as regulators of adenylate cyclase activity, Proc. Natl. Acad. Sci. USA, 72: 590–594 (1975b).

    Article  CAS  Google Scholar 

  • Sharma, S. K., Klee, W. A. and Nirenberg, M., Opiate-dependent modulation of adenylate cyclase, Proc. Natl. Acad. Sci. USA, 74: 3365–3369 (1977).

    Article  CAS  Google Scholar 

  • Stefano, G. B., Catapano, E. J. and Kream, R. M., Characterization of the dopamine stimulated adenylate cyclase in the pedal ganglia of Mytilus edulis: interactions with etorphine, β-endorphins, D-ala-and methionine-enkephalin, Cell Mol. Neurobiol., 1: 57–68 (1981).

    Article  CAS  Google Scholar 

  • Sternweis, P. C. and Robishaw, J. D., Isolation of two proteins with high affinity for guanine nucleotides from membranes of bovine brain, J. Biol. Chem., 259: 13806–13813 (1984).

    CAS  Google Scholar 

  • Tucker, J. F., Effect of pertussis toxin on normorphine-dependence and on acute inhibitory effects of normorphine and Clonidine in guinea-pig isolated ileum, Br. J. Pharmacol., 83: 326–328 (1984).

    Article  CAS  Google Scholar 

  • Walczak, S. A., Wilkening, D. and Makman, M. H., Interaction of morphine, etorphine and enkephalins with dopamine-stimulated adenylate cyclase of monkey amygdala, Brain Res., 160: 105–116 (1979).

    Article  CAS  Google Scholar 

  • Walczak, S. A., Makman, M. H. and Gardner, E. L., Acetyl-methadol metabolites influence opiate receptors and adenylate cyclase in amygdala, Eur. J. Pharmacol., 72: 343–349 (1981).

    Article  CAS  Google Scholar 

  • Yajima, Y., Akita, Y. and Saito, T., Pertussis toxin blocks the inhibitory effects of somatostatin on cAMP-dependent vasoactive intestinal peptide and cAMP-independent thyrotropin releasing hormone-stimulated prolactin secretion of GH3 cells, J. Biol. Chem., 261: 2684–2689 (1986).

    CAS  Google Scholar 

Supplementary References

  • Crain, S. M., Shen, K.-F. and A. Chalazonitis, Opioids excite rather than inhibit sensory neurons after chronic opioid exposure of mouse dorsal root ganglion-spinal cord explants. Soc. Neurosci. Abstr., 13 (1987) in press.

    Google Scholar 

  • Makman, M. H., Dvorkin, B. and Crain, S. M., Modulation of adenylate cyclase activity of mouse spinal cord-ganglion explants by opioids, serotonin and pertussis toxin. Brain Res. (1987) in press.

    Google Scholar 

  • Qiu, X.-C., Crain, S. M. and Makman, M. H., Serotonin receptor systems in spinal cord and sensory ganglia: relation to opioid action, tolerance and cross tolerance. Soc. Neurosci. Abstr. 13 (1987) in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Crain, S.M., Makman, M.H. (1987). Electrophysiologic Responses and Adenylate Cyclase Activities of Mouse Spinal Cord-Dorsal Root Ganglion Explants Rendered Tolerant by Chronic Exposure to Morphine or Pertussis Toxin. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics