Skip to main content

Protein F1 and Protein Kinase C May Regulate the Persistence, Not the Initiation, of Synaptic Potentiation in the Hippocampus

  • Chapter
Book cover Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

Brain information storage likely involves enhanced neuronal responsiveness which persists for long periods of time following learning. Hebb (1949) first postulated a mechanism for such enhanced responsiveness in which repetitive activation of a synapse would produce persistent increases in the efficacy of transmission at that synapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers, R. F. and Routtenberg, A., Kinase C phosphorylates a protein involved in synaptic plasticity, Br. Res. 334:147–151 (1985).

    Article  CAS  Google Scholar 

  • Akers, R. F., Lovinger, D., Colley, P., Linden, D. and Routtenberg, A., Translocation of protein kinase C activity may mediate hippocampal long term potentiation, Science 231:587–589 (1986).

    Article  CAS  Google Scholar 

  • Aloyo, V. J., Zwiers, H. and Gispen, W. H., Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase, J. Neurochem. 41:649–653 (1983).

    Article  CAS  Google Scholar 

  • Andersen, P., Bliss, T. V. P. and Skrede, K. K., Lamellar organization of hippocampal excitatory pathways, Exp. Br. Res. 13:222–238 (1971).

    Google Scholar 

  • Barnes, C. A., Memory deficits associated with senescence: A behavioral and electrophysiological study, J. Comp. Physiol. Psychol., 93:74–104 (1979).

    Article  CAS  Google Scholar 

  • Barnes, C. A. and McNaughton, B. L., Spatial memory and hippocampal synaptic plasticity in senescent and middle-aged rats. In D. G. Stein (ed.), The Psychobiology of Aging: Problems and Perspectives, Elsevier/Holland, Amsterdam 253–272 (1980).

    Google Scholar 

  • Berger, T. W., Long-term potentiation of hippocampal synaptic transmission affects rate of behavioral learning, Science, 224:627–630 (1984).

    Article  CAS  Google Scholar 

  • Berridge, M. J., Rapid accumulation of inositol triphosphate reveals that agonists hydrolyse polyphosphoinositides instead of phosphatidylinositol, Biochem. J. 212:849–858 (1983).

    CAS  Google Scholar 

  • Bliss, T. V. P. and Lomo, T., Long lasting potentiation of synaptic transmission in the dentate area of the anesthetized rabbit following stimulation of the perforant path, J. Physiol., 232: 331–356 (1973).

    CAS  Google Scholar 

  • Cain, S. and Routtenberg, A., Neonatal handling selectively alters the phosphorylation of a 47,000 mol. wt. protein in male rat hippocampus, Br. Res. 267: 192–195 (1983).

    Article  CAS  Google Scholar 

  • Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U. and Nishizuka, Y., Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem., 257: 7847–7851 (1982).

    CAS  Google Scholar 

  • Chan, S. Y., Murakami, K. and Routtenberg, A., Purification of a kinase C substrate: brain phosphoprotein F1 and the discovery of an endogenous kinase C inhibitory factor, Soc. Neurosci. Abstr., 11: 926 (1985).

    Google Scholar 

  • Collingridge, G. L., Long term potentiation in the hippocampus: mechanisms of initiation and modulation by neurotransmitters, Trends in Pharm. Sci., 6: 407–411 (1985).

    Article  CAS  Google Scholar 

  • Delorenzo, R. J., Calcium, calmodulin. and synaptic function: Modulators of neurotransmitter release, nerve terminal protein phosphorylation and synaptic vesicle morphology by calcium and calmodulin, In: R. Tapia and C. W. Cotman (eds.), Regulatory Mechanisms of Synaptic Transmission, Plenum Press, New York, 205–240 (1981).

    Chapter  Google Scholar 

  • Desmond, N. and Levy, W. B., Synaptic correlates of associative potentiation/depression: An ultrastructural study in the hippocampus, Br. Res. 265 (1): 21–30 (1983).

    Article  CAS  Google Scholar 

  • Douglas, R. M. and Goddard, G. V., Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus, Br. Res. 86: 205–215 (1975).

    Article  CAS  Google Scholar 

  • Ehrlich, Y. H., Rabjohns, R. R. and Routtenberg, A., Experiental-input alters the phosphorylation of specific proteins in brain membranes, Pharm. Biochem. Behav., 6: 354–360 (1977).

    Article  Google Scholar 

  • Hebb, D. O., The Organization of Behavior, John Wiley and Sons, New York (1949).

    Google Scholar 

  • Hjorth-Simonsen, A., Projection of the lateral part of the entorhinal area to the hippocampus and fascia dentata, J. Comp. Neurol., 146: 219–232 (1972).

    Article  CAS  Google Scholar 

  • Kraft, A. S. and Andersen, W. B., Phorbol esters increase the amount of Ca2+, phospholipid-dependent protein kinase associated with the plasma membrane, Nature, 301: 621 (1983).

    Article  CAS  Google Scholar 

  • Lee, K. S., Schottler, F., Oliver, M. and Lynch, G., Brief bursts of highfrequency stimulation produce two types of structural change in rat hippocampus, J. Neurophysiol., 44: 247–258 (1980).

    CAS  Google Scholar 

  • Linden, D. J., Murakami, K. and Routtenberg, A., A newly discovered protein kinase C activator (oleic acid) enhances long-term potentiation in the intact hippocampus, Br. Res., 379: 358–363 (1986).

    Article  CAS  Google Scholar 

  • Linden, D. J., Murakami, K. and Routtenberg, A., Oleic acid, a protein kinase C activator, enhances hippocampal long-term potentiation, Soc.Neurosci. Abstr., 12: 1169 (1986).

    Google Scholar 

  • Lomo, T., Patterns of activation in a monosynaptic cortical pathway: The perforant path input to the dentate area of the hippocampal formation, Exp. Br. Res., 12: 18–45 (1971).

    CAS  Google Scholar 

  • Lovinger, D., Colley, P., Linden, D., Mukarami, K. and Routtenberg, A., Phorbol ester, which induces protein kinase C (PKC) translocation to the membrane, prevents decay of long term potentiation, Soc. Neurosci. Abstr., 11: 927 (1985).

    Google Scholar 

  • Lovinger, D. M., Akers, R. F., Nelson, R. B., Barnes, C. A., McNaughton, B. L. and Routtenberg, A., A selective increase in the phosphorylation of protein Fl, a protein kinase C substrate, directly related to three day growth of long term synaptic enhancement, Br. Res., 343: 137–143 (1985).

    Article  CAS  Google Scholar 

  • Lovinger, D. M., Colley, P., Akers, R. F., Nelson, R. B. and Routtenberg, A., Direct relation of long-duration synaptic potentiation to phosphorylation of membrane protein F1: A substrate for membrane protein kinase C, Br, Res., in press (1986).

    Google Scholar 

  • Lovinger, D., Barnes, C. A., Mizumori, S. J. Y., Chan, S. Y., Linden, D., Murakami, K., Sheu, F-S. and Routtenberg, A., Protein F1, previously related to synaptic plasticity, exhibits decreased phosphorylation in senescent rat hippocampus, Soc. Neurosci., 12: 1168 (1986).

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J., Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193: 265–275 (1951).

    CAS  Google Scholar 

  • Lynch, G., Larson, J., Kelso, S., Barrioneuvo, G. and Schottler, F., Intracellular injections of EGTA block induction of hippocampal long-term potentiation, Nature, 305: 719–721 (1984).

    Article  Google Scholar 

  • McNaughton, B. L., Long-term synaptic enhancement and short-term potentiation in rat fascia dentata act through different mechanisms, J. Physiol., 324: 249–262 (1982).

    CAS  Google Scholar 

  • McNaughton, B. L., Barnes, C. A., Rao, G., Baldwin, J. and Rasmussen, M., Long-term enhancement of hippocampal synaptic transmission and the acquisition of spatial information, J. Neurosci., 6(2): 563–571 (1986).

    CAS  Google Scholar 

  • Morris, M. E., Krnjevic, K. and Ropert, N., Changes in free Ca++ recorded inside hippocampal neurons in response to fimbrial stimulation, Soc. Neurosci. Abstr., 9: 395 (1983).

    Google Scholar 

  • Morris, M. E., Krnjevic, K. and McDonald, J. F., Changes in intracellular free Ca ion concentration evoked by electrical activity in cat spinal neurons in situ, Neurosci., 14: 563–580 (1985).

    Article  CAS  Google Scholar 

  • Murakami, K. and Routtenberg, A., Direct activation of purified protein kinase C by the unsaturated fatty acids (oleate and arachidonate) in the absence of phospholipids and Ca2+, FEBS LETT., 192(2): 189–193 (1985).

    Article  CAS  Google Scholar 

  • Nelson, R. B. and Routtenberg, A., Characterization of the 47kD protein F1 (pI 4.5), a kinase C substrate directly related to neural plasticity, Exper. Neurol., 89: 213–224 (1985).

    Article  CAS  Google Scholar 

  • Nelson, R. B., Routtenberg, A., Hyman, C. and Pfenninger, K. H., A phosphoprotein, F1, directly related to neuronal plasticity in adult rat brain may be identical to a major growth cone membrane protein, Soc. Neurosci. Abstr., 11: 927 (1985).

    Google Scholar 

  • Nestler, E. J. and Greengard, P., Protein Phosphorylation in the Nervous System, John Wiley and Sons, New York (1984).

    Google Scholar 

  • Oestreicher, A. B., Zwiers, H., Schotman, P. and Gispen, W. H., Immunohistochemical localization of a phosphoprotein (B-50) isolated from rat brain synaptosomal plasma membranes, Brain Res. Bull., 6: 145–153 (1981).

    Article  CAS  Google Scholar 

  • Ranck, J. B., Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats, Part I. Behavioral correlates and firing repertoires, Exp. Neurol. 461–555 (1973).

    Google Scholar 

  • Rodnight, R., Aspects of protein phosphorylation in the nervous system with particular reference to synaptic transmission, In W. H. Gispen and A. Routtenberg (eds.), Prog. Br. Res. Vol. 56, Elsevier/Holland, Amsterdam, 1–25 (1982).

    Google Scholar 

  • Routtenberg, A., Anatomical localization of phosphoprotein and glycoprotein substrates of memory, Progr. Neurobiol., 12: 85–113 (1979).

    Article  CAS  Google Scholar 

  • Routtenberg, A., Memory formation as a post-translational modification of brain proteins. In: C.A. Marsan and H. Matthies (eds.), Mechanisms and Models of Neural Plasticity. Proc. VIth Intl. Neurobiol. IBRO Symposium on Learning and Memory, Raven Press, New York, pp. 17–24 (1982a).

    Google Scholar 

  • Routtenberg, A., Identification and back-titration of brain pyruvate dehydrogenase. In W. H. Gispen and A. Routtenberg (eds.), Prog. Brain Res. Vol. 56, Elsevier/Holland, Amsterdam, pp. 349–374 (1982b).

    Google Scholar 

  • Routtenberg, A., Brain phosphoproteins, Kinase C and Protein F1 protagonists of plasticity in particular pathways. In G. Lynch, J. McGaugh, and N. Weinberger (eds.), Neurobiology of Learning and Memory, The Guilford Press, New York, 479–490 (1984).

    Google Scholar 

  • Routtenberg, A., Synaptic plasticity and protein kinase C., In: W. H. Gispen and A. Routtenberg (eds.), Phosphoproteins in the Nervous System, Elsevier/Holland, Amsterdam, 211–234 (1986).

    Chapter  Google Scholar 

  • Routtenberg, A., Lovinger, D. and Steward O., Selective increase in the phosphorylation of a 47kD protein (F1) directly related to long-term potentiation, Behav. Neural Biol. 43: 3–11 (1985a).

    Article  CAS  Google Scholar 

  • Routtenberg, A., Protein kinase C activation leading to protein F1 phosphorylation may regulate synaptic plasticity by presynaptic terminal growth, Behav. Neural Biol., 44(2): 186–200 (1985b).

    Article  CAS  Google Scholar 

  • Routtenberg, A., Ehrlich, Y. H. and Rabjohns, R., Effect of a training experience on phosphorylation of a specific protein in neocortical and subcortical membrane preparations, Fed. Proc, 34: 293 (1975).

    Google Scholar 

  • Routtenberg, A., Colley, P., Linden, D., Lovinger, D., Murakami, K. and Sheu, F.-S., Phorbol ester promotes growth of synaptic plasticity, Br. Res. 378: 374–378 (1986).

    Article  CAS  Google Scholar 

  • Schwartzkroin, P. A. and Wester, K., Long-lasting facilitation of synaptic potential following tetanization in the hippocampal slice, Br. Res., 89: 107–119 (1975).

    Article  CAS  Google Scholar 

  • Snipes, G. J., Freeman, J. A., Costello, B., Chan, S. and Routtenberg, A., Evidence that the growth-associated protein, GAP-43, and plasticityassociated protein, protein F1, are identical, Soc. Neurosci. Abstr., 12 (1986).

    Google Scholar 

  • Takai, Y., Yamamoto, M., Inoue, M., Kishimoto, A. and Nishizuka, Y., A proenzyme of cyclic nucleotide independent protein kinase and its activation by calcium-dependent neutral protease from rat liver, Biochem. Biophys. Res. Comm., 77: 542–550 (1977).

    Article  CAS  Google Scholar 

  • Teyler, T. J. and Discenna, P., Long-term potentiation as a candidate mnemonic device, Br. Res. Rev., 7: 15–28 (1984).

    Article  Google Scholar 

  • Turner, R. W., Baimbridge, K. G. and Miller, J. J., Calcium-induced longterm potentiation in the hippocampus, Neurosci., 7: 1411–1416 (1982).

    Article  CAS  Google Scholar 

  • Van Harreveld, A. and Fifkova, E., Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanotic potentiation, Exp. Neurol., 49: 736–739 (1975).

    Article  Google Scholar 

  • Zwiers, H., Jolles, J., Aloyo, V. J., Oestreicher, A. B. and Gispen, W. H., ACTH and synaptic membrane phosphorylation in rat brain, In: W. H. Gispen and A. Routtenberg (eds.), Prog. Br. Res., Vol. 56, Elsevier/ Holland, Amsterdam, 405–417 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Lovinger, D.M., Routtenberg, A. (1987). Protein F1 and Protein Kinase C May Regulate the Persistence, Not the Initiation, of Synaptic Potentiation in the Hippocampus. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics