Skip to main content

Synapsin I, A Phosphoprotein Associated with Synaptic Vesicles: Possible Role in Regulation of Neurotransmitter Release

  • Chapter
Molecular Mechanisms of Neuronal Responsiveness

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 221))

Abstract

Elucidation of the molecular events underlying communication between neurons is one of the most exciting problems in neuroscience. While it has been known for many years that the depolarization-dependent influx of calcium into the presynaptic terminal leads to the release of neurotransmitters, little is known about the molecular events which underly this presynaptic process. Similarly, although neurotransmitters are known to produce graded responses via interaction with specific receptors, little is known about the molecular events which underlie these postsynaptic responses. Although it has been generally assumed that protein molecules play important roles in the production of these responses, it is only within the last 15 years that we have come to understand how the activity of proteins could be regulated with a time course consistent with mediation or modulation of neuronal communication. What has become apparent during this period is that protein phosphorylation is a primary mechanism utilized by eukaryotic cells for post-translational regulation of protein function. Consequently, protein phosphorylation represents a conceptual framework for analysis of the molecular mechanisms which underly neuronal communcation. The scheme shown in Figure 1 summarizes our current concepts about the molecular pathways underlying biological regulation of neuronal communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, W. B. and Levitan, I. B., Intracellular injection of protein kinase inhibitor blocks the serotonin-induced increase of K+ conductance in Aplysia neuron R 15, Proc. Natl. Acad. Sci. USA 79:3877–3880 (1982).

    Article  CAS  Google Scholar 

  • Aitken, A., Bilham, T., Cohen, P., Aswad, D., and Greengard, P., A specific substrate from rabbit cerebellum for guanosine 3′:5′ monophosphate-dependent protein kinase. III. Amino acid sequences at the two phosphorylation sites, J. Biol. Chem. 256:3501–3506 (1981).

    CAS  Google Scholar 

  • Albert, K. A., Wu, W. C. S., Nairn, A. C., and Greengard, P., Inhibition by calmodulin of calcium/phospholipid-dependent protein phosphorylation, Proc. Natl. Acad. Sci. USA 81:3622–3625 (1984).

    Article  CAS  Google Scholar 

  • Alkon, D. L., Acosta-Urguidi, J., Olds, J., Kuzma, G., and Neary, J. T., Protein kinase injection reduces voltage-dependent potassium currents, Science 219:303–306 (1983).

    Article  CAS  Google Scholar 

  • Aswad, D. and Greengard, P., A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. I. Purification and characterization, J. Biol. Chem. 256:3487–3493 (1981a).

    CAS  Google Scholar 

  • Aswad, D. and Greengard, P., A specific substrate from rabbit cerebellum for guanosine 3′:5′-monophosphate-dependent protein kinase. II. Kinetic studies on its phosphorylation by guanosine 3′:5′-monophosphate-dependent and adenosine 3′:5′-monophosphate-dependent protein kinase, J. Biol. Chem. 256:3494–3500 (1981b).

    CAS  Google Scholar 

  • Barnekow, A., Schartl, M., Anders, F., and Bauer, H., Identification of a fish protein associated with a kinase activity and related to the Rous sarcoma virus transforming protein, Cancer Research 42:2429–2433 (1982).

    CAS  Google Scholar 

  • Browning, M. D., Dunwiddie, T., Bennett, W., Gispen, W. H., and Lynch G., Synaptic phosphoproteins: Specific changes after repetitive stimulation of the hippocampal slice, Science 203:60–62 (1979).

    Article  CAS  Google Scholar 

  • Browning, M. D. and Greengard, P., A family of synaptic vesicle-associated phosphoproteins: synapsin Ia, synapsin Ib, protein IIIa and protein IIIb, Soc. Neurosci. Abstr. 10:196 (1984).

    Google Scholar 

  • Browning, M. D., Baudry, M. and Lynch, G., Evidence that high frequency stimulation influences the phosphorylation of pyruvate dehydrogenase and that the activity of this enzyme is linked to mitochondrial calcium sequestration, Prog. Brain. Res. 56:317–338 (1982).

    Article  CAS  Google Scholar 

  • Browning, M. D., Huganir, R., and Greengard, P., Protein phosphorylation and neuronal function, J. Neurochem. 45:11–23 (1985).

    Article  CAS  Google Scholar 

  • Burgoyne, R. D., Regulation of the muscarinic acetylcholine receptor: effects of phosphorylating conditions on agonist and antagonist binding, J. Neurochem. 40:324–331 (1983).

    Article  CAS  Google Scholar 

  • Castellucci, V. F., Kandel, E. R., Schwartz, J. H., Wilson, F. D., Nairn, A. C., and Greengard, P., Intracellular injection of the catalytic subunit of cyclic AMP-dependent protein kinase stimulates facilitation of transmitter release underlying behavioral sensitization in Aplysia, Proc. Natl. Acad. Sci. USA 77:7492–7496 (1980).

    Article  CAS  Google Scholar 

  • Caudwell, B., Antoniw, J. F., and Cohen, P., Calsequestrin, mysosin, and the components of the protein-glycogen complex in rabbit skeletal muscle, Eur. J. Biochem. 86:511–518 (1978).

    Article  CAS  Google Scholar 

  • Cohen, P., The role of protein phosphorylation in neural and hormonal control of cellular activity, Nature 296:613–620 (1982).

    Article  CAS  Google Scholar 

  • Costa, M. R., Casnellie, J. E., and Catterall, W. A., Selective phosphorylation of the alpha subunit of the sodium channel by cAMP-dependent protein kinase, J. Biol. Chem. 257:7918–7921 (1982).

    CAS  Google Scholar 

  • Costa, M. R. C. and Catterall, W. A., Cyclic AMP-dependent phosphorylation of the α-subunit of the sodium channel in synaptic nerve ending particles, J. Biol. Chem. 259:8210–8218 (1984a).

    CAS  Google Scholar 

  • Costa, M. R. C. and Catterall, W. A., Phosphorylation of the a-subunit of the sodium channel by protein kinase C, Cellular and Molecular Neurobiology 4:291–297 (1984b).

    Article  CAS  Google Scholar 

  • Cotton, P. C. and Brugge, J. S., Neural tissues express high levels of the cellular src gene product pp60 c-src, Mol. and Cell Biol. 3:1157–1162 (1983).

    CAS  Google Scholar 

  • DeCamilli, P., Ueda, T., Bloom, F. E., Battenberg, E., and Greengard, P., Widespread distribution of protein I in the central and peripheral nervous system, Proc. Natl. Acad. Sci. USA 76:5977–5981 (1979).

    Article  CAS  Google Scholar 

  • DeCamilli, P., Cameron, R., and Greengard, P., Synapsin I (protein I), a nerve terminal-specific phosphoprotein: I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections, J. Cell Biol. 96: 1337–1354 (1983).

    Article  CAS  Google Scholar 

  • DeCamilli, P., Harris, S. M., Huttner, W. B., and Greengard, P., Synapsin I (Protein I), a nerve terminal-specific phosphoprotein: II. Its specific association with synaptic vesicles demonstrated by immunocyto-chemistry in agarose embedded synaptosomes, J. Cell Biol. 96:1355–1373 (1983).

    Article  CAS  Google Scholar 

  • de Jonge, H. R. and Rosen, O. M., Self-phosphorylation of cyclic guanosine 3′:5′-monophosphate-dependent protein kinase from bovine lung, J. Biol. Chem. 252:2780–2783 (1977).

    Google Scholar 

  • Demaille, J. G. and Pechere, J.-F., The control of contractility by protein phosphorylation, Adv. Cyclic Nucleotide Res. 15:337–371 (1983).

    CAS  Google Scholar 

  • de Peyer, J. E., Cachelin, A. B., Levitan, I. B., and Reuter, H., Ca2+-activated K+ conductance in internally perfused snail neurons is enhanced by protein phosphorylation, Proc. Natl. Acad. Sci. USA 79: 4207–4211 (1982).

    Article  Google Scholar 

  • DeRiemer, S. A., Strong, J. A., Albert, K. A., Greengard, P., and Kaczmarek, L. K., Enhancement of calcium current in Aplysia neurons by phorbol ester and protein kinase C, Nature 313:313–316 (1985).

    Article  CAS  Google Scholar 

  • Dolphin, A. C. and Greengard, P., Serotonin stimulates phosphorylation of Protein I in the facial motor nucleus of rat brain, Nature 298:76–79 (1981a).

    Article  Google Scholar 

  • Dolphin, A. C. and Greengard, P., Neurotransmitter and neuromodulator-dependent alterations in phosphorylation of Protein I in slices of rat facial nucleus, J. Neurosci. 1:192–203 (1981b).

    CAS  Google Scholar 

  • Douglas, W. W. and Ritchie, J. M., A technique for recording functional activity in specific groups of myelinated and non-myelinated nerve trunks, J. Physiol. Lond. 138:19–30 (1957).

    CAS  Google Scholar 

  • Edelman, A. M., Raese, J. D., Lazar, M. A., and Barchase, J. D., Tyrosine hydroxylase: studies on the phosphorylation of a purified preparation of the brain enzyme by the cyclic AMP-dependent protein kinase, J. Pharmacol. Exp. Ther. 216:647–653 (1981).

    CAS  Google Scholar 

  • Ehrlich, Y. H., Whittemore, S. R., Garfield, M. K., Graber, S. G., and Lenox, R. H., Protein phosphorylation in the regulation and adaptation of receptor function, Prog. Brain Res. 56:375–396 (1982).

    Article  CAS  Google Scholar 

  • Forn, J. and Greengard, P., Depolarizing agents and cyclic nucleotides regulate the phosphorylation of specific neuronal proteins in rat cerebral cortex slices, Proc. Natl. Acad. Sci. USA 75:5195–5199 (1978).

    Article  CAS  Google Scholar 

  • Fried, G., Nestler, E. J., DeCamilli, P., Stjärne, L., Olson, L., Lundberg, J. M., Hökfelt, T., Ouimet, C. C., and Greengard, P., Cellular and subcellular localization of Protein I in the peripheral nervous system, Proc. Natl. Acad. Sci. USA 79:2717–2721 (1982).

    Article  CAS  Google Scholar 

  • Gispen, W. H. and Routtenberg, A., eds., Brain Phosphoproteins, Prog. in Brain Res., Vol 56, Elsevier, Amsterdam (1982).

    Google Scholar 

  • Goldenring, J. R., Gonzalez, B. and DeLorenzo, R. J., Isolation of brain Ca2+-calmodulin tubulin kinase containing calmodulin binding proteins, Biochem. Biophys. Res. Commun. 108:421–428 (1982).

    Article  CAS  Google Scholar 

  • Gordon, A. S., Davis, C. G., Milfay, D., and Diamond, I., Phosphorylation of acetylcholine receptor by endogenous membrane protein kinase in receptor-enriched membranes of Torpedo californica, Nature 267:539–540 (1977).

    Article  CAS  Google Scholar 

  • Gurley, L. R., D’Anna, J. A., Halleck, M. S., Barham, S. S., Walters, R. A., Jett, J. J., and Tobey, R. A., Relationships between histone phosphorylation and cell proliferation, Cold Spring Harbor Conf. Cell Prolif. 8:1073–1093 (1981).

    CAS  Google Scholar 

  • Hathaway, G. M. and Traugh, J. A., Casein kinases-multi-potential protein kinases, Curr. Top. Cell Reg. 21:101–127 (1982).

    CAS  Google Scholar 

  • Hemmings Jr., H. C., Nairn, A. C., Aswad, D. W., and Greengard, P., DARPP-32, a dopamine and adenosine 3′:5′-monophosphate-regulated phospho-protein enriched in dopamine-innervated brain regions. II. Purification and characterization of the phosphoprotein from bovine caudate nucleus, J. Neurosci. 4:99–110 (1984a).

    CAS  Google Scholar 

  • Hemmings Jr., H. C., Greengard, P., Tung, H. Y. L., and Cohen, P., DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1, Nature 310:503–505 (1984b).

    Article  CAS  Google Scholar 

  • Hemmings Jr., H. C., Walaas, S. I., Ouimet, C. C., and Greengard, P., “Structure and Function of Dopamine Receptors” in Receptor Biochemistry and Methodology, (eds. Creese, I. & Fraser, C. M.), vol. 9, Alan R. Liss, Inc., New York (1985).

    Google Scholar 

  • Hoch, D. B., Dingledine, R. J., and Wilson, J. E., Long-term potentiation in the hippocampal slice: possible involvement of pyruvate dehydrogenase, Brain Res. 302:125–134 (1984).

    Article  CAS  Google Scholar 

  • Hook, V. Y. H., Stokes, K. B., Lee, N. M., and Loh, H. H., Possible nuclear protein kinase regulation of homologous ribonucleic acid polymerases from small dense nuclei of mouse brain during morphine tolerance-dependence, Biochem. Pharmacol. 30:2313–2318 (1981).

    Article  CAS  Google Scholar 

  • Huang, C.-K., Browning, M. D., and Greengard, P., Purification and characterization of protein IIIb, a mammalian brain phosphoprotein, J. Biol. Chem. 257:6524–6528 (1982).

    CAS  Google Scholar 

  • Huganir, R. L., Miles, K., and Greengard, P., Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine-specific protein kinase, Proc. Natl. Acad. Sci. USA 81:6968–6972 (1984).

    Article  CAS  Google Scholar 

  • Huttner, W. B., DeGennaro, L. J., and Greengard, P., Differential phosphorylation of multiple sites in purified Protein I by cyclic AMP-depen-dent and calcium dependent-protein kinases, J. Biol. Chem. 256:1482–1488 (1981).

    CAS  Google Scholar 

  • Huttner, W. B., Schiebler, W., Greengard, P., and DeCamilli, P., Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation, J. Cell Biol. 96:1374–1388 (1983).

    Article  CAS  Google Scholar 

  • Joh, T. H., Park, D. H., and Reis, D. J., Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation, Proc. Natl. Acad. Sci. USA 75:4744–4748 (1978).

    Article  CAS  Google Scholar 

  • Johnson, E. M., Ueda, T., Maeno, H. and Greengard, P., Adenosine 3′:5′-monophosphate-dependent phosphorylation of a specific protein in synaptic membrane fractions from rat cerebrum, J. Biol. Chem. 247: 5650–5652 (1972).

    CAS  Google Scholar 

  • Johnson, E. M., Nuclear protein phosphorylation and the regulation of gene expression, Handb. Exp. Pharmacol. 58:(Part I) 507–533 (1982).

    Article  CAS  Google Scholar 

  • Kaczmarek, L. K., Jennings, K. R., Strumwasser, F., Nairn, A. C., Walter, U. L., Wilson, F. D., and Greengard, P., Microinjection of catalytic subunit of cyclic AMP-dependent protein kinase enhances calcium action potentials of bag cell neurons in cell culture, Proc. Natl. Acad. Sci. USA 77:7487–7491 (1980).

    Article  CAS  Google Scholar 

  • Kennedy, M. B. and Greengard, P., Two calcium/calmodulin-dependent protein kinases which are highly concentrated in brain, phosphorylate Protein I at distinct sites, Proc, Natl. Acad. Sci. 78:1293–1297 (1981).

    Article  CAS  Google Scholar 

  • Kennedy, M. B., McGuinness, T., and Greengard, P., A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: Partial purification and characterization, J. Neurosci. 3:818–831 (1983).

    CAS  Google Scholar 

  • Kikkawa, U., Takai, Y., Minakuchi, R., Inohara, S., and Nishizuka, Y., Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification and properties, J. Biol. Chem. 257:13341–13348 (1982).

    CAS  Google Scholar 

  • Krebs, E. G. and Beavo, J. A., Phosphorylation-dephosphorylation of enzymes, Ann. Rev. Biochem. 48:932–959 (1979).

    Article  Google Scholar 

  • Krueger, B. K., Forn, J., and Greengard, P., Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes, J, Biol. Chem. 252:764–2773 (1977).

    Google Scholar 

  • Kuhn, D. M. and Lovenberg, W., Role of calmodulin in the activation of tryptophan hydroxylase, Fed. Proc. 41:2258–2264 (1982).

    CAS  Google Scholar 

  • Langan, T., Phosphorylation of liver histone following the administration of glucagon and insulin, Proc. Natl. Acad. Sci. 64:1276–1283 (1969).

    Article  CAS  Google Scholar 

  • Lee, R. H., Brown, B. M., and Lolley, R. N., Protein kinases of retinal rod outer segments: identification and partial characterization of cyclic nucleotide dependent protein kinase and rhodopsin kinase, Biochem. 20: 7532–7538 (1981).

    Article  CAS  Google Scholar 

  • Llinas, R. R., Calcium in synaptic transmission, Scientific American 247: 56–65 (1982).

    Article  CAS  Google Scholar 

  • Llinas, R. R., The squid giant synapse, Curr. Top. Mem. Trans. 22:519–546 (1984).

    Article  Google Scholar 

  • Llinas, R. R., Steinberg, I. Z., and Walton, K., Presynaptic calcium currents in squid giant synapse, Biophys. J. 33:289–322 (1981).

    Article  CAS  Google Scholar 

  • Llinas, R. R., McGuinness, T. L., Leonard, C. S., Sugimori, M., and Greengard, P., Intraterminal injection of synapsin I or calcium/calmodulin-dependent protein kinase II alters neurotransmitter release at the squid giant synapse, Proc. Natl. Acad. Sci. USA 82:3035–3039 (1985).

    Article  CAS  Google Scholar 

  • Marchmont, R. J. and Houslay, M. D., Insulin triggers cyclic AMP-dependent activation and phosphorylation of a plasma membrane cyclic AMP phosphodiesterase, Nature 286:904–906 (1980).

    Article  CAS  Google Scholar 

  • McGuinness, T. L., Lai, Y. L., Greengard, P., Woodgett, J. R., Cohen, P., A multifunctional calmodulin-dependent protein kinase: similarities between skeletal muscle glycogen synthase and brain synapsin I kinase, FEBS Lett. 163:329–334 (1983).

    Article  CAS  Google Scholar 

  • McGuinness, T. L., Lai, Y. L., and Greengard, P., Ca2+/calmodulin-dependent protein kinase II: Isozymic forms from rat forebrain and cerebellum, J. Biol. Chem. 260:1696–1704 (1985).

    CAS  Google Scholar 

  • Mobley, P. and Greengard, P., Evidence for widespread effects of noradrenaline on axon terminals in the rat frontal cortex, Proc. Natl. Acad. Sci. USA 82:945–947 (1985).

    Article  CAS  Google Scholar 

  • Nairn, A. C. and Greengard, P., Purification and characterization of brain Ca2+/calmodulin-dependent protein kinase I that phosphorylates synapsin I, Neurosci. Abstr. 1029 (1983).

    Google Scholar 

  • Navone, F., Greengard, P., and DeCamilli, P., Synapsin I in nerve terminals: Selective association with small synaptic vesicles, Science 226:1209–1211 (1984).

    Article  CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P., Dopamine and depolarizing agents regulate the state of phosphorylation of Protein I in the mammalian superior cervical sympathetic ganglion, Proc. Natl. Acad. Sci. USA 77:7479–7483 (1980).

    Article  CAS  Google Scholar 

  • Nestler, E. J. and Greengard, P., Nerve impulses increase the state of phosphorylation of protein I in the rabbit superior cervical ganglion, Nature 296:452–454 (1982).

    Article  CAS  Google Scholar 

  • Nestler, E. and Greengard, P., Protein phosphorylation in the nervous system, Wiley, New York (1984).

    Google Scholar 

  • Oestreicher, A. B., van Duin, M., Zwiers, H., and Gispen, W. H., Cross-reaction of anti-rat B-50: Characterization and isolation of a “B-50 phosphoprotein “ from bovine brain, J. Neurochem. 43:935–943 (1984).

    Article  CAS  Google Scholar 

  • Osterrieder, W., Brum, G., Hescheler, J., Trautwein, W., Flockerzi, V., and Hofmann, F., Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current, Nature 298:576–578 (1982).

    Article  CAS  Google Scholar 

  • Ouimet, C. C., McGuinness, T. L., and Greengard, P., Immunocytochemical localization of calcium/calmodulin-dependent protein kinase II in rat, Proc. Natl. Acad. Sci. USA 81:5604–5608 (1984).

    Article  CAS  Google Scholar 

  • Rangel-Aldao, R. and Rosen, O. M., Dissociation and reassociation of the phosphorylated and non-phosphorylated forms of adenosine 3′:5′-mono-phosphate-dependent protein kinase from bovine cardiac muscle, J. Biol. Chem. 251:3375–3380 (1976).

    CAS  Google Scholar 

  • Roberts, S., Ribosomal protein phosphorylation and protein synthesis in the brain, Prog. Brain Res. 56:195–211 (1982).

    Article  CAS  Google Scholar 

  • Schiebler, W. Jahn, R., Doucet, J.-P., Rothlein, J., and Greengard, P., Synapsin I (protein I) binds specifically and with high affinity to highly purified synaptic vesicles from rat brain, J. Biol. Chem. (in press) (1986).

    Google Scholar 

  • Schlichter, D. J., Casnellie, J. E., and Greengard, P., An endogenous substrate for cGMP-dependent protein kinase in mammalian cerebellum, Nature 273:61–62 (1978).

    Article  CAS  Google Scholar 

  • Schulman, H. and Greengard, P., Stimulation of brain membrane protein phosphorylation by calcium and an endogenous heat-stable protein, Nature 271:478–479 (1978a).

    Article  CAS  Google Scholar 

  • Schulman, H. and Greengard, P., Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by “calcium-dependent regulator,” Proc. Natl. Acad. Sci. USA 75:5432–5436 (1978b).

    Article  CAS  Google Scholar 

  • Sharma, R. K., Wang, T. H., Wirch, E., and Wang, J. H., Purification and properties of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase, J. Biol. Chem. 255:5916–5923 (1980).

    CAS  Google Scholar 

  • Shichi, H. and Somers, R. L., Light-dependent phosphorylation of rhodopsin. Purification and properties of rhodopsin kinase, J. Biol. Chem. 253: 7040–7046 (1978).

    CAS  Google Scholar 

  • Sieghart, W., Forn, J., Schwarcz, R., Coyle, J. T., and Greengard, P., Neuronal localization of specific brain phosphoproteins, Brain Res. 156: 345–350 (1978).

    Article  CAS  Google Scholar 

  • Stadel, J. M., Nambi, P., Shorr, R. G. L., Sawyer, D. F., Caron, M. G., and Lefkowitz, R. J., Catecholamine-induced desensitization of turkey erythrocyte adenylate cyclase is associated with phosphorylation of the β-adrenergic receptor, Proc. Natl. Acad. Sci. USA 80:3173–3177 (1983).

    Article  CAS  Google Scholar 

  • Teichberg, V. I. and Changeux, J.-P., Evidence for protein phosphorylation and dephosphorylation in membrane fragments isolated from the electric organ of Electrophorus electricus, FEBS Lett. 74:71–76 (1977).

    Article  CAS  Google Scholar 

  • Thomas, G., Activation of multiple S6 phosphorylation and its possible role in the alteration of mRNA expression, Prog. Brain Res. 56:179–194 (1982).

    Article  CAS  Google Scholar 

  • Treiman, M. and Greengard, P., D-1 and D-2 dopaminergic receptors regulate protein phosphorylation in the rat neurohypophysis, Neurosci. 15:713–722 (1985).

    Article  CAS  Google Scholar 

  • Tsou, K. and Greengard, P., Regulation of phosphorylation of Proteins I, IIIa IIIb in rat neurohypophysis in vitro by electrical stimulation and by neuroactive agents, Proc. Natl. Acad. Sci. USA 79:6075–6079 (1982).

    Article  CAS  Google Scholar 

  • Ueda, T., Attachment of the synapse-specific phosphoprotein, Protein I, to the synaptic membrane: A possible role of the collagenase-sensi-tive region of Protein I, J. Neurochem. 36:297–300 (1981).

    Article  CAS  Google Scholar 

  • Ueda, T., Maeno, H., and Greengard, P., Regulation of endogenous phosphorylation of specific proteins in synaptic membrane fractions from rat brain by adenosine 3′:5′ monophosphate, J. Biol. Chem. 248:8295–8305 (1973).

    CAS  Google Scholar 

  • Ueda, T. and Greengard, P., Adenosine 3′:5′ monophosphate-regulated phosphoprotein system of neuronal membranes. I. Solubilization, purification, and some properties of an endogenous phosphoprotein, J. Biol. Chem. 252:5155–5163 (1977).

    CAS  Google Scholar 

  • Walaas, S. I., Aswad, D. W., and Greengard, P., A dopamine-and cyclic AMP-regulated phosphoprotein enriched in dopamine-innervated brain regions, Nature 301:69–71 (1983).

    Article  CAS  Google Scholar 

  • Wise, B. C., Guidotti, A., and Costa, E., Phosphorylation induces a decrease in the biological activity of the protein inhibitor (GABA-modulin) of γ-aminobutyric acid binding sites, Proc. Natl, Acad. Sci. USA 80:886–890 (1983).

    Article  CAS  Google Scholar 

  • Wu, W. C.-S., Walaas, S. I., Nairn, A. C., and Greengard, P., Calcium-phospholipid regulates phosphorylation of Mr “87K” substrate protein in brain synaptosomes, Proc. Natl. Acad. Sci. USA 79:5249–5253 (1982).

    Article  CAS  Google Scholar 

  • Yamauchi, T. and Fujisawa, H., Tyrosine 3-monooxygenase is phosphorylated by Ca2+-calmodulin-dependent protein kinase, followed by activation by activator protein, Biochem. Biophys. Res. Comm. 100:807–813 (1981).

    Article  CAS  Google Scholar 

  • Young, J. Z., The functioning of giant nerve fibers of the squid, J. Expl. Biol. 15:170–185 (1938).

    Google Scholar 

  • Zwiers, H., Veldhuis, D., Schotman, P., and Gispen, W. H., ACTH, cyclic nucleotides and brain protein phosphorylation in vitro, Neurochem. Res. 1:669–677 (1976).

    Article  Google Scholar 

  • Zwiers, H., Jolles, J., Aloyo, V. J., Oestereicher, A. B., and Gispen, W. H., ACTH and synaptic membrane phosphorylation, Prog. Brain Res. 55:405–417 (1982).

    Article  Google Scholar 

  • Zwiller, J. M., Revel, O., and Basset, P., Evidence for phosphorylation of rat brain guanylate cyclase by cyclic AMP-dependent protein kinase, Biochem. Biophys. Res. Commun. 101:1381–1387 (1982).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Plenum Press, New York

About this chapter

Cite this chapter

Greengard, P., Browning, M.D., McGuinness, T.L., Llinas, R. (1987). Synapsin I, A Phosphoprotein Associated with Synaptic Vesicles: Possible Role in Regulation of Neurotransmitter Release. In: Ehrlich, Y.H., Lenox, R.H., Kornecki, E., Berry, W.O. (eds) Molecular Mechanisms of Neuronal Responsiveness. Advances in Experimental Medicine and Biology, vol 221. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7618-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7618-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7620-0

  • Online ISBN: 978-1-4684-7618-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics