Skip to main content

Diffusion The Crucial Process in Many Aspects of the Biology of Bacteria

  • Chapter

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 11))

Abstract

The basis of all motion in biology is diffusion. The movement may be as simple as the diffusion of a precursor from the point of formation to an enzyme that processes it; it may be as complex as the mechanism of Chemotaxis or muscle contraction. The movements of nutrients up to a cell or a collection of cells is probably the first thing that comes to mind when one considers bacterial ecosystems. Diffusion is also relevant to the movement of microorganisms and nutrients through slimes and gels in natural ecosystems. Of course, in microbiology there are practical applications of diffusion, such as the assay of antibiotic concentrations, in which diffusion, among other factors, controls the size of the zone of inhibition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acker, G. K., 1964, Molecular exclusion and restricted diffusion process in molecular-sieve chromatography, Biochemistry 3; 723–730.

    Article  Google Scholar 

  • Adams, G., and Delbruck, M., 1968, Reduction of dimensionality in biological diffusion processes, in: Structural Chemistry and Molecular Biology (A. Rich and N. Davidson, eds.), pp. 198–215, W. H. Freeman and Co., San Francisco.

    Google Scholar 

  • Berg, H. C., 1983, Random Walks in Biology, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Berg, H. C., and Purcell, E. M., 1977, Physics of chemoreception, Biophys. J. 20: 193–219.

    Article  PubMed  CAS  Google Scholar 

  • Best, J., 1955, The inference on intracellular enzymatic properties for kinetics data obtained from living cells, J. Cell Comp. Physiol. 46: 1–27.

    Article  CAS  Google Scholar 

  • Caldwell, D. E., and Lawrence, J. R., 1986, Growth kinetics of Pseudomonas fluorescens microcolonies within the hydrodynamic boundary layers of a surface microenvironment, Microbial Ecol. 12: 299–312.

    Article  Google Scholar 

  • Carslaw, H. S., and Jaeger, J. C., 1959, Conduction of Heat in Solids, Oxford University Press, Oxford.

    Google Scholar 

  • Characklis, W. G., 1984, Biofilm development: A process analysis, in: Microbial Adhesion and Aggregation (K. C. Marshall, ed.), pp. 137–157, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Characklis, W. G., and Cooksey, K. E., 1983, Biofilms and microbial fouling, Adv. Appl. Microbiol. 29: 93–138.

    Article  CAS  Google Scholar 

  • Crank, J., 1975, The Mathematics of Diffusion, 2nd ed., Oxford University Press, Oxford.

    Google Scholar 

  • Kelly, F. X., Dapsis, K. J., and Lauffenburger, D. A., 1988, Effect of bacterial Chemotaxis on dynamics of microbial competition, Microb. Ecol. 14: 115–131.

    Article  Google Scholar 

  • Koch, A. L., 1959, The dynamics of coliphage plaque formation. I. Macroplaque experiments, Virology 8: 273–292.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1960, Encounter efficiency of coliphage-bacterium interaction, Biochim. Biophys. Acta 39: 311–318.

    Article  Google Scholar 

  • Koch, A. L., 1966, The logarithm in biology. I. Mechanisms generating the log-normal distribution exactly, J. Theor. Biol. 12: 276–290.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1967, Kinetics of permease catalyzed transport, J. Theor. Biol. 14: 103–130.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1969, The logarithm in biology. II. Distributions simulating the log-normal, J. Theor. Biol. 23: 251–268.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1971, The adaptive responses of Escherichia coli to a feast and famine existence, Adv. Microb. Physiol. 6: 147–217.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1979, Microbial growth in low concentrations of nutrients, in: Strategies of Microbial Life in Extreme Environments (M. Shilo, ed.), pp. 261–279, Springer-Verlag, Berlin.

    Google Scholar 

  • Koch, A. L., 1982a, Diffusion limit and bacterial growth, in: Overproduction of Microbial Products (V. Krumphanzl, B. Sikyta, and Z. Vanek, eds.), pp. 571–580, Academic Press, London.

    Google Scholar 

  • Koch, A. L., 1982b, Multistep kinetics: Choice of models for the growth of bacteria, J. Theor. Biol. 98: 401–417.

    Article  PubMed  CAS  Google Scholar 

  • Koch, A. L., 1983, The surface stress theory of microbial morphogenesis, Adv. Microbiol. Physiol. 24: 301–366.

    Article  CAS  Google Scholar 

  • Koch, A. L., 1985, The macroeconomics of bacterial growth, in: Bacteria in Their Natural Environments (M. M. Fletcher and G. D. Floodgate, eds.), pp. 1–42, Academic Press, London.

    Google Scholar 

  • Koch, A. L., and Coffman, R., 1970, Diffusion permeations or enzyme limitation: A probe for the kinetics of enzyme induction. Biotech. Bioeng. XII: 651–677.

    Article  Google Scholar 

  • Koch, A. L., and Wang, C. H., 1982, How close to the theoretical diffusion limit do bacterial uptake systems function? Arch. Microbiol. 131: 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, K. C., 1976, Interfaces in Microbial Ecology, Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Matin, A., and Veldkamp, H., 1978, Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment, J. Gen. Microbiol. 105: 187–197.

    PubMed  CAS  Google Scholar 

  • Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, in: Advances in Microbial Ecology, Vol. 6 (K. C. Marshall, ed.), pp. 171–198, Plenum Press, New York.

    Chapter  Google Scholar 

  • Morita, R. Y., 1985, Starvation and miniaturisation of heterotrophs, with special emphasis on maintenance of the starved viable state, in: Bacteria in Their Natural Environments (M. M. Fletcher and G. D. Floodgate, eds.), pp. 111–130, Academic Press, London.

    Google Scholar 

  • Nikaido, H., 1979, Nonspecific transport through the outer membrane, in: Bacterial Outer Membrane (M. Inouye, ed.), pp. 361–407, John Wiley & Sons, New York.

    Google Scholar 

  • Nikaido, H., and Rosenberg, E. Y., 1981, Effect of solute size on the diffusion rates through the transmembrane pores of the outer membrane of Escherichia coli, J. Gen. Physiol. 11: 121–135.

    Article  Google Scholar 

  • Ogsten, A. G., 1958, The spaces in a uniform random suspension of fibres, Trans. Faraday Soc. 54: 1754–1757.

    Article  Google Scholar 

  • Ou, L.-T., and Marquis, R. E., 1970, Electromechanical interaction on cell walls of gram-positive cocci, J. Bacteriol. 101: 92–101.

    PubMed  CAS  Google Scholar 

  • Poindexter, J., 1981, Oligotrophy: Fast and famine existence, in: Advances in Microbial Ecology, Vol. 5 (M. Alexander, ed.), pp. 63–89, Plenum Press, New York.

    Google Scholar 

  • Powell, E. O., 1967, The growth rate of microorganisms as a function of substrate concentration, in: Microbial Physiology and Continuous Culture (E. O. Powell, C. Evans, R. E. Strange, and D. W. Tempest, eds.), pp. 34–55, Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Preiss, J. W., and E. Pollard, 1960–61, Localization of β-galactosidase in cells of Escherichia coli by low voltage electron bombardment. Biophys. J. 1: 429–435.

    Article  Google Scholar 

  • Purcell, E. M., 1977, Life at low Reynolds number, Am. J. Phys. 45: 3–12.

    Article  Google Scholar 

  • Rashevsky, N., 1960, Mathematical biophysics, Vol. 1, 3rd rev. ed., pp. 1–148, Dover, New York.

    Google Scholar 

  • Renkin, E. M., 1954, Filtration, diffusion, and molecular sieving through porous cellulose membranes, J. Gen. Physiol. 38: 225–243.

    PubMed  CAS  Google Scholar 

  • Revsbech, N. P., and Jorgensen, B. B., 1986, Microelectrodes: Their use in microbial ecology, in: Advances in Microbial Ecology, Vol. 9 (K. C. Marshall, ed.), pp. 293–252, Plenum Press, New York.

    Google Scholar 

  • Rodbard, D., 1974, Estimation of molecular weight by gel filtration and gel electrophoresis, in: Methods of Protein Separation, Vol. 2 (N. Catsimpoolas, ed.), pp. 145–180, Plenum Press, New York.

    Google Scholar 

  • Valentine, R. C., and Allison, A. C., 1959, Virus particle adsorption. I. theory of absorption and experiments on the attachment of particles to nonbiological surfaces, Biochim. Biophys. Acta 34: 10–23.

    Article  PubMed  CAS  Google Scholar 

  • von Smoluchowski, M., 1918, Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Losungen, Zeitschr. Phys. Chem. 92: 129–168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Koch, A.L. (1990). Diffusion The Crucial Process in Many Aspects of the Biology of Bacteria. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7612-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7612-5_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7614-9

  • Online ISBN: 978-1-4684-7612-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics