Skip to main content

Ecology of Polyprosthecate Bacteria

  • Chapter
Book cover Advances in Microbial Ecology

Part of the book series: Advances in Microbial Ecology ((AMIE,volume 12))

Abstract

Several reviews have been written about the hyphomicrobia and caulobacters, the prosthecate bacteria with which bacteriologists are most familiar (Dow et al., 1976; Whittenbury and Dow, 1977; Dow and Lawrence, 1980; Dow and Whittenbury, 1980; Harder and Attwood, 1978; Hirsch, 1974b; Moore, 1981a,b; Poindexter, 1964, 1981a,b). In contrast, the multiple-appendaged or polyprosthecate bacteria have not been so often reviewed (Schmidt, 1971). There are two reasons for this lack of attention. First, these organisms were discovered and isolated later than most other prosthecate bacteria. And second, members of this group have been, in general, more difficult to isolate in pure culture and to cultivate and study in the laboratory. Recently, however, a number of new genera and species have been isolated and named (Vasilyeva and Semenov, 1984, 1986; Bauld et al., 1983; Schlesner, 1983, 1987a,b; Staley, 1984; Vasilyeva et al., 1991), and these bacteria have become the subjects of greater investigation. This review briefly considers the biological characteristics of these bacteria and discusses in greater detail what is known about their ecological role(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akagi, Y., and Taga, N., 1980, Uptake of D-glucose and L-proline by oligotrophic and heterotrophic marine bacteria, Can. J. Microbiol. 26:454–459.

    PubMed  CAS  Google Scholar 

  • Akpemado, K. M., and Bracquart, P. A., 1983, Uptake of branched-chain amino acids by Streptococcus thermophilus, Appl. Environ. Microbiol. 45:136–140.

    PubMed  CAS  Google Scholar 

  • Albrecht, W., Fischer, A., Smida, J., and Stackebrandt, E., 1987, Verrucomicrobium spinosum, a eubacterium representing an ancient line of descent, Syst. Appl. Microbiol. 10:57–62.

    CAS  Google Scholar 

  • Bauld, J., Bigford, R., and Staley, J. T., 1983, Prosthecomicrobium litoralum, a new species from marine habitats, Int. J. Syst. Bacteriol. 33:613–617.

    Google Scholar 

  • Blagoveschenskaya, G.G., 1989, Microbial Cenoses of the Meadow-Black Soils During the Long-Term Rice Growing, Thesis, Moscow (in Russian).

    Google Scholar 

  • Brooke, A. G., and Attwood, M. M., 1984, Methylamine uptake by the facultative methylotroph Hyphomicrobium X, J. Gen. Microbiol. 130:459–463.

    CAS  Google Scholar 

  • Button, D. K., 1985, Kinetics of nutrient limited transport and microbial growth, Microbiol. Rev. 156:122–129.

    Google Scholar 

  • Chapman, J. S., and Meeks, J. S., 1983, Glutamine and glutamate transport by Anabaena variabilis, J. Bacteriol. 156:122–129.

    PubMed  CAS  Google Scholar 

  • Chernykh, N. A., Vasilyeva, L. V., Ginijatullina, A. I., and Semenov, A. M., 1990, DNA-DNA hybridization of new Prosthecomicrobium strains, Microbiology 59:127–132 (in Russian).

    CAS  Google Scholar 

  • Cruden, D. C., and Markovetz, A. J., 1981, Relative numbers of selected bacterial forms in different regions of the cockroach hindgut, Arch. Microbiol. 121:129–134.

    Google Scholar 

  • Dawes, E. A., and Senior, P. J., 1973, The role and regulation of energy reserve polymers, Adv. Microb. Physiol. 10:135–266.

    PubMed  CAS  Google Scholar 

  • Dijkhuizen, L., de Boek, L., Boers, R. H., Harder, W., and Konings, W. H., 1982, Uptake of methylamine via an inducible energy-dependent transport system in the facultative methylotroph Arthrobacter P. 1, Arch. Microbiol 133:261–266.

    CAS  Google Scholar 

  • Dow, C. S., and Lawrence, A., 1980, Microbial growth and survival in oligotrophic freshwater environments, Microbial growth and survival in extremes of environment, Autumn, Demonstr., Meet, London, pp. 1–20.

    Google Scholar 

  • Dow, C. S., and Whittenbury, R., 1979, Prosthecate bacteria, in: Developmental Biology of Prokaryotes, Oxford, pp. 139–165.

    Google Scholar 

  • Dow, C. S., and Whittenbury, R., 1980, Prokaryotic form and function, in: Contemporary Microbial Ecology (D. C. Ellwood, J. M. Hedger, M. J. Latham, J. M. Lynch, and J. H. Slater, eds.), Academic Press, New York, pp. 391–417.

    Google Scholar 

  • Dow, C. S., Westmacott, D., and Whittenbury, R., 1976, Ultrastructure of budding and prosthecate bacteria, in: Microbial Ultrastructure (R. Fuller and D. W. Loverlock, eds.), Academic Press, New York, pp. 187–221.

    Google Scholar 

  • Duchow, E., and Douglas, H. S., 1949, Rhodomicrobium vannielii, a new photoheterotrophic bacterium, J. Bacteriol. 58:409–416.

    Google Scholar 

  • Finan, T. M., Wood, J. M., and Jordan, D. C., 1981, Succinate transport in Rhizobium leguminosarum, J. Bacteriol. 148:193–202.

    PubMed  CAS  Google Scholar 

  • Fischer, A., Roggentin, T., Schlesner, H., and Stackebrandt, E., 1985, 16S ribosomal RNA oligonucleotide cataloguing and the phylogenetic position of Stella humosa, Syst. Appl. Microbiol. 6:43–47.

    CAS  Google Scholar 

  • Gebers, R., Moore, R. L., and Hirsch, P., 1981a, DNA/DNA reassociation studies on the genus Pedomicrobium, FEMS Microbiol. Lett. 11:283–286.

    CAS  Google Scholar 

  • Gebers, R., Moore, R. L., and Hirsch, P., 1981b, Deoxyribonucleic acid base composition and nucleotide distribution of Pedomicrobium spp., Zentralbl. Bakteriol. Parasitenkd, Infektionskr. Hyg. Abt. 1 Orig. Reihe C 2:332–338.

    CAS  Google Scholar 

  • Gebers, R., Moore, R. L., and Hirsch, P., 1984, Physiological properties and DNA/DNA homologies of Hyphomonas polymorpha and Hyphomonas neptunium, Syst. Appl. Microbiol. 5:510–517.

    CAS  Google Scholar 

  • Gebers, R., Wehmeyer, U., Roggentin, T., Schlesner, H., Kölbel-Boelke, J., and Hirsch, P., 1985, Deoxyribonucleic acid base compositions and nucleotide distribution of 65 strains of budding bacteria, Int. J. Syst. Bacteriol. 35:260–269.

    CAS  Google Scholar 

  • Golovlev, E. L., 1985, The metabolic limitation of microbiological synthesis, in: Problems of Biochemistry and Physiology of Microorganisms, Puschino on Oka, pp. 76–84 (in Russian).

    Google Scholar 

  • Gorlenko, V. M., 1968, A new species of green thiobacteria, Rep. USSR Acad. Sci. 179:1229–1231 (in Russian).

    CAS  Google Scholar 

  • Gorlenko, V. M., and Lebedeva, E. V., 1971, New green sulphur bacteria with apophyses, Microbiology 40:1035–1039.

    PubMed  CAS  Google Scholar 

  • Harder, W., and Attwood, M. M., 1978, Biology, physiology, and biochemistry of Hyphomicrobium, Adv. Microb. Physiol. 17:303–359.

    PubMed  CAS  Google Scholar 

  • Henrici, A. T., and Johnson, D. E., 1935, Studies of freshwater bacteria. II. Stalked bacteria, a new order of schizomycetes, J. Bacteriol. 30:61–93.

    PubMed  CAS  Google Scholar 

  • Hirsch, P., 1974a, Budding and/or appendaged bacteria, in: Bergey’s Manual of Determinative Bacteriology, 8th ed. (R. E. Buchanan and N. E. Gibbons, eds.), Williams & Wilkins, Baltimore, pp. 148–151.

    Google Scholar 

  • Hirsch, P., 1974b, Budding bacteria, Annu. Rev. Microbiol. 28:391–444.

    PubMed  CAS  Google Scholar 

  • Hirsch, P., and Schlesner, H., 1981, The genus Stella, in: The Prokaryotes: A Handbook on Habitats, Isolation and Identification of Bacteria, Vol. 1 (M. P. Starr and H. Stolp, eds.), Springer-Verlag, Berlin, pp. 461–465.

    Google Scholar 

  • Hodson, R. E., Carlucci, A. F., and Azam, F., 1979, Glucose transport in a low nutrient marine bacterium, Abstr. 79th Annu. Meet. ASM, Los Angeles, p. 189.

    Google Scholar 

  • Hofle, M. G., 1982, Glucose uptake of Cytophaga johnsonae studied in batch and chemostat culture, Arch. Microbiol. 133(4):289–294.

    Google Scholar 

  • Houwink, A. L., 1951, Caulobacter versus Bacillus spec. div., Nature 168:654–655.

    PubMed  CAS  Google Scholar 

  • Hutchinson, G. E., 1943, Thiamine in lake waters and aquatic organisms, Arch. Biochem. 2:143–150.

    CAS  Google Scholar 

  • Hutchinson, G. E., 1967, A Treatise on Limnology. II. Introduction to Lake Biology and the Limnoplankton, Wiley, New York.

    Google Scholar 

  • Ierusalimsky, N. D., 1966, Principles of regulation of microorganisms’ growth rate, in: Controlling Biosynthesis, Nauka, pp. 5–19 (in Russian).

    Google Scholar 

  • Ishida, Y., Imai, J., and Kadota, H., 1979, Growth and activity of an aquatic bacterium in low nutrient media, Abstr. 79th Annu. Meet. ASM, Los Angeles, p. 195.

    Google Scholar 

  • Jackson, F., and Dawes, E., 1976, Regulation of the tricarboxylic acid cycle and poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii grown under nitrogen or oxygen limitation, J. Can. Microbiol. 97:303–312.

    CAS  Google Scholar 

  • Jannasch, H. W., 1963, Bacteriales Wachstum bei geringen substraktkonzentrationen, Arch. Mikrobiol. 45(2):323–342.

    Google Scholar 

  • Jennings, A. V., 1899, On a new genus of bacteria (Astrobacter), Proceedings of the Royal Irish Academy, Third Series, Vol. 5, No. 2, pp. 312–316.

    Google Scholar 

  • Jones, M., 1905, A peculiar microorganism showing rosette formation, Zentralbl. Bakteriol. Parasitenkd. Abt. II 14:459–463.

    Google Scholar 

  • Jordan, T. L., Porter, J. S., and Pate, J. L., 1974, Isolation and characterization of prosthecae of Asticcacaulis biprosthecum, Arch. Microbiol. 96(2):1–16.

    CAS  Google Scholar 

  • Kanamaru, K., Hieda, T., Iwamura, Y., Mikami, Y., Kisaki, T., 1982, Isolation and characterization of Hyphomicrobium sp. and its polysaccharide formation from methanol, Agric. Biol. Chem. 46(10):2411–2417.

    CAS  Google Scholar 

  • Kanbe, C., and Uchida, K., 1985, Oxygen consumption by Pediococcus halophilus, Agric. Biol. Chem. 49(10):2931–2937.

    CAS  Google Scholar 

  • Kölbel-Boelke, J., Gebers, R., and Hirsch, P., 1985, Genome size determinations for 33 strains of budding bacteria, Int. J. Syst. Bacteriol. 35:270–273.

    Google Scholar 

  • Larson, R. J., and Pate, J. L., 1976, Glucose transport in isolated prosthecae of Asticcacaulis biprosthecum, J. Bacteriol. 126(1):282–293.

    PubMed  CAS  Google Scholar 

  • Loeffler, F., 1890, Weitere Untersuchungen über die Beizung and Färbung der Geisselen bei den Bakterien, Centralbl. Bakteriol. 7:625–639.

    Google Scholar 

  • Lysenko, A. M., Semenov, A. M., and Vasilyeva, L. V., 1984, DNA nucleotide composition of prosthecate bacteria with radial cell symmetry, Microbiology 53(5):859–861 (in Russian).

    CAS  Google Scholar 

  • Midgley, M., Noor, M. A., and Mohd, A., 1984, The interaction of oxygen with Propionibacterium acnes, FEMS Microbiol. Lett. 23(2–3): 183–186.

    CAS  Google Scholar 

  • Mishustin, E. N., 1975, Associations of soil microorganisms, Nauka, p. 107 (in Russian).

    Google Scholar 

  • Mishustin, E. N., 1981, Current problems in investigations of the soil microbial populations, in: Microbial Communities and Their Functioning in the Soils, Kiev, pp. 3–13 (in Russian).

    Google Scholar 

  • Mishustin, E. N., 1982, The development of studies on the cenoses of the soil microorganisms, Advances in Microbiology, Nauka, No. 17, pp. 117–136 (in Russian).

    Google Scholar 

  • Moaledj, K., and Overbeck, J., 1980, Studies on uptake kinetics of oligotrophic carbophilic bacteria, Arch. Hydrobiol. 89(3):303–312.

    CAS  Google Scholar 

  • Monod, J., 1949, The growth of bacterial cultures, Annu. Rev. Microbiol. 3:371–394.

    CAS  Google Scholar 

  • Moore, R. L., 1977, Ribosomal ribonucleic acid cistron homologues among Hyphomicrobium and various other bacteria, Can. J. Microbiol. 23:478–481.

    PubMed  CAS  Google Scholar 

  • Moore, R. L., 1981a, The genera Hyphomicrobium, Pedomicrobium, and Hyphomonas, in: The Prokaryotes. A Handbook on Habitats, Isolation and Identification of Bacteria (M. P. Starr and H. Stolp, eds.), Springer-Verlag, Berlin, Vol. 1, pp. 480–487.

    Google Scholar 

  • Moore, R. L., 1981b, The biology of Hyphomicrobium and other prosthecate, budding bacteria, Annu. Rev. Microbiol. 35:567–594.

    PubMed  CAS  Google Scholar 

  • Moore, R. L., and Hirsch, P., 1972, Deoxyribonucleic acid base sequence homologies of some budding and prosthecate bacteria, J. Bacteriol. 110(1):256–261.

    PubMed  CAS  Google Scholar 

  • Moore, R. L., and Staley, J. T., 1976, Deoxyribonucleic acid homology in Prosthecomicrobium and Ancalomicrobium strains, Int. J. Syst. Bacteriol. 26:283–285.

    Google Scholar 

  • Morita, R. Y., 1982, Starvation-survival of heterotrophs in the marine environment, in: Adv. Microb. Ecol. (K. C. Marshall, ed.), Plenum Press, New York, Vol. 6, pp. 171–198.

    Google Scholar 

  • Nelidov, S. N., Vasilyeva, L. V., and Mishustin, E. N., 1986, Application of crop residues for increased rice yield in alkaline soils under amelioration, Proc. USSR Acad. Sci. Biol. Ser. 1:43–57 (in Russian).

    Google Scholar 

  • Nicholls, D. G., 1982, Bioenergetics: An Introduction to the Chemiosmotic Theory, Academic Press, New York.

    Google Scholar 

  • Nikitin, D. I., 1985, The biology of oligotrophic bacteria, Doctoral thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow (in Russian).

    Google Scholar 

  • Nikitin, D. I., and Kuznetsov, S. I., 1967, Water microflora studied by electron microscopy, Microbiology 36(5):938–941 (in Russian).

    PubMed  CAS  Google Scholar 

  • Nikitin, D. I., and Vasilyeva, L. V., 1967, Rod-shaped organisms with spherical inflations, Proc. USSR Acad. Sci. Biol. Ser. 2:296–301 (in Russian).

    CAS  Google Scholar 

  • Nikitin, D. I., and Vasilyeva, L. V., 1968, The new species of the soil organism Agrobacterium polyspheroidum, Proc. Acad. Sci. USSR, Biol. Ser. 3:443–444 (in Russian).

    CAS  Google Scholar 

  • Nikitin, D. I., Vasilyeva, L. V., and Lokhmacheva, R. A., 1966, New and rare forms of the soil microorganisms, Nauka (in Russian).

    Google Scholar 

  • Nikitin, D. I., Andreeva, L. V., and Kotova, O. M., 1979, Conditions of medium and the cycles of development of oligotrophic soil microorganisms, in: Ontogenesis of Microorganisms, Nauka, pp. 217–234 (in Russian).

    Google Scholar 

  • Nur, I., Okon, Y., and Henis, Y., 1982, Effect of dissolved oxygen tension on production of carotenoids, poly-β-hydroxybutyrate, succinate oxidase and superoxide dismutase by Azospirillum brasilense Cd grown in continuous culture, J. Gen. Microbiol. 128(12):2937–2943.

    CAS  Google Scholar 

  • Ostrovskaya, T. A., 1986, The number and morphological peculiarities of water bacteria—the indications of lake eutrophication, in: Structure and Function of Communities of Water Microorganisms, Nauka, pp. 85–88 (in Russian).

    Google Scholar 

  • Panikov, N. S., and Zvyagintsev, D. G., 1983a, Kinetic approach to the evaluation of the diversity of microbial habitat types in soil, Rep. USSR Acad. Sci. 268(5): 1241–1244 (in Russian).

    Google Scholar 

  • Panikov, N. S., and Zvyagintsev, D. G., 1983b, The role of different cultivation conditions for physiological studies of microorganisms, Microbiology 52(1):161–166 (in Russian).

    Google Scholar 

  • Pedros-Alio, C., Mas, J., and Cinezzero, R., 1985, The influence of poly-β-hydroxybutyrate accumulation on cell volume and buoyant density in Alcaligenes eutrophus, Arch. Microbiol. 143(2): 178–184.

    CAS  Google Scholar 

  • Pfennig, N., and Trüper, H. G., 1989, Anoxygenic phototrophic bacteria, in: Bergey’s Manual of Systematic Bacteriology (J. T. Staley, M. Bryant, and N. Pfennig, eds.), Williams & Wilkins, Baltimore, Vol. III, pp. 1635–1709.

    Google Scholar 

  • Pirt, S. J., 1975, Principles of Microbe and Cell Cultivation, Blackwell, Oxford.

    Google Scholar 

  • Pirt, S. J., 1982, Maintenance energy: A general model for energy-limited and energy-sufficient growth, Arch. Microbiol. 133(4):300–302.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1964, Biological properties and classification of the Caulobacter group, Bacteriol. Rev. 28:231–295.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1981a, The caulobacters: Ubiquitous unusual bacteria, Microbiol. Rev. 45(1): 123–179.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1981b, Oligotrophy. Feast and famine existence, Adv. Microb. Ecol. 5:63–89.

    CAS  Google Scholar 

  • Poindexter, J. S., 1984a, The role of calcium in stalk development and in phosphate acquisition in Caulobacter crescentus, Arch. Microbiol. 138(2):140–152.

    PubMed  CAS  Google Scholar 

  • Poindexter, J. S., 1984b, The role of prostheca development in oligotrophic aquatic bacteria, in: Current Perspectives in Microbial Ecology (M. J. Klug and C. A. Reddy, eds.), ASM, pp. 33–40.

    Google Scholar 

  • Porter, J. S., and Pate, J. L., 1975, Prosthecae of Asticcacaulis biprosthecum: System for the study of membrane transport, J. Bacteriol. 122(3):976–986.

    PubMed  CAS  Google Scholar 

  • Schlesner, H., 1983, Isolierung und Beschreibung knospender und prostecater Bacterien aus der Kiel Forde, dissertation zur Ellanging des Doctorgrades, Der Christianalbrechta-Universität, Kiel.

    Google Scholar 

  • Schlesner, H., 1987a, Verrumicrobium spinosum gen. nov., sp. nov.: A fimbriated prosthecate bacterium, Syst. Appl. Microbiol. 10:54–56.

    Google Scholar 

  • Schlesner, H., 1987b, Filomicrobium fusiforme gen. nov., sp. nov., a slender budding hyphal bacterium from brackish water, Syst. Appl. Microbiol. 10:63–67.

    Google Scholar 

  • Schlesner, H., Kath, T., Fischer, A., and Stackebrandt, E., 1989, Studies on the phylogenetic position of Prosthecomicrobium pneumaticum, P. enhydrum, Ancalomicrobium adetum, and various Prosthecomicrobium-like bacteria, Syst. Appl. Microbiol. 12:150–155.

    CAS  Google Scholar 

  • Schmidt, J. M., 1971, Prosthecate bacteria, Annu. Rev. Microbiol. 25:92–110.

    Google Scholar 

  • Semenov, A. M., 1986, The respiration activity of oligotrophous prosthecate bacteria, Microbiology 55(6):929–932 (in Russian).

    CAS  Google Scholar 

  • Semenov, A. M., 1987a, The morpho-physiological characteristics of a group of Polyprosthecobacteria, Thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow, p. 203 (in Russian).

    Google Scholar 

  • Semenov, A. M., 1987b, Characteristics of soil Prosthecobacteria, Proc. 9th Int. Symp. Soil Biol. Conserv. Biosphere (J. Szegi, ed.), Acad. Kiado, Budapest, pp. 697–702.

    Google Scholar 

  • Semenov, A. M., and Botvinko, J. V., 1988, Exoglycan by Prosthecomicrobium pneumaticum, Microbiology 57(3):511–512 (in Russian).

    CAS  Google Scholar 

  • Semenov, A. M., and Vasilyeva, L. V., 1985, Morpho-physiological characteristics of budding Prosthemicrobium Labrys monachus with radial symmetry of cell under periodical and uninterrupted cultivation, Proc. USSR Acad. Sci. Biol. Ser. 2:288–293 (in Russian).

    Google Scholar 

  • Semenov, A. M., and Vasilyeva, L. V., 1986a, The morphological and physiological characteristics of the oligotrophic prosthecobacterium Prosthecomicrobium hirschii grown under the conditions of batch and continuous cultivation, Microbiology 55(2):248–252 (in Russian).

    CAS  Google Scholar 

  • Semenov, A. M., and Vasilyeva, L. V., 1986b, Stella vacuolata growth upon batch and continuous cultivation, Proc. USSR Acad. Sci. Biol. Ser. 6:959–963 (in Russian).

    Google Scholar 

  • Semenov, A. M., Okorokov, L. A., and Vasilyeva, L. V., 1986, Discovery of the extremely high affinity to substrate of Prosthecobacteria, Rep. USSR Acad. Sci. 291(1):225–227 (in Russian).

    CAS  Google Scholar 

  • Semenov, A. M., Okorokov, L. A., and Vasilyeva, L. V., 1988, Glucose uptake by Labrys monachus, a budding prosthecate bacterium with radial cell symmetry, Microbiology 6:912–916 (in Russian).

    Google Scholar 

  • Semenov, A. M., Hanzlikova, A., and Jandera, A., 1989a, Quantitative estimation of poly-β-hydroxybutyric acid in some oligotrophic polyprosthecate bacteria, Folia Microbiol. 34(3):267–270.

    CAS  Google Scholar 

  • Semenov, A. M., Hanzlikova, A., and Tenov, N., 1989b, Accumulation of poly-β-hydroxybutyrate by some oligotrophic polyprosthecate bacteria, Microbiology 58(6):923–926 (in Russian).

    CAS  Google Scholar 

  • Sonnleitner, B., Heinzle, E., Braunegg, G., and Lafferty, R. M., 1979, Formation kinetics of poly-β-hydroxybutyric acid (PHB) production in Alkaligenes eutrophus H 16 and Mycoplana; the dissolved oxygen tension in ammonium-limited batch culture, Eur. J. Appl. Microbiol. Biotechnol. 7(1): 1–10.

    CAS  Google Scholar 

  • Stackebrandt, E., Fischer, A., Roggentin, T., Wehmeyer, U., Bomaz, D., and Smida, J., 1988a, A phylogenetic survey of budding and/or prosthecate, non-phototrophic eubacteria; membership of Hyphomicrobium, Hyphomonas, Pedomicrobium, Filomicrobium, Caulobacter, and “Dichotomicrobium” to the alpha-subdivision of purple-non-sulfur bacteria, Arch. Microbiol. 149: 547–556.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Murray, R. G. E., and Trüper, H. G., 1988b, Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “Purple Bacteria and their Relatives,” Int. J. Syst. Bacteriol. 38:321–325.

    Google Scholar 

  • Staley, J. T., 1968, Prosthecomicrobium and Ancalomicrobium: New prosthecate freshwater bacteria, J. Bacteriol. 95(5): 1921–1942.

    PubMed  CAS  Google Scholar 

  • Staley, J. T., 1971, Incidence of prosthecate bacteria in a polluted stream, J. Appl. Microbiol. 22(4): 496–502.

    CAS  Google Scholar 

  • Staley, J. T., 1984, Prosthecomicrobium hirschii, a new species in a redefined genus, Int. J. Syst. Bacteriol. 34(3):304–308.

    Google Scholar 

  • Staley, J. T., and Fuerst, J. A., 1989, The budding and/or appendaged bacteria, in: Bergey’s Manual of Systematic Bacteriology, Vol. III (J. T. Staley, M. Bryant, and N. Pfennig, eds.), Williams & Wilkins, Baltimore.

    Google Scholar 

  • Staley, J. T., and Mandel, M., 1973, Deoxyribonucleic acid base composition of Prosthecomicrobium and Ancalomicrobium strains, Int. J. Syst. Bacteriol. 23(3):271–273.

    CAS  Google Scholar 

  • Staley, J. T., Marshall, K. C., and Skerman, V. B. D., 1980, Budding and prosthecate bacteria from freshwater habitats of various trophic states, Microb. Ecol. 5(4):245–252.

    Google Scholar 

  • Stanley, P. M., Ordal, E. J., and Staley, J. T., 1979, High numbers of prosthecate bacteria in pulp mill waste aeration lagoons, Appl. Environ. Microbiol. 37(5): 1007–1011.

    PubMed  CAS  Google Scholar 

  • Stepanovich, T. V., 1985, Physiologo-biochemical peculiarities of oligotrophic bacteria, Thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow (in Russian).

    Google Scholar 

  • Tamm, E., and Pate, J. L., 1985, Amino acid transport by prosthecae of Asticcacaulis biprosthecum. Evidence of a broad-range transport system, J. Gen. Microbiol. 131(10):2687–2699.

    Google Scholar 

  • Tarakanov, B. V., 1971, Fimbria and unusual appendages in microorganisms inhabiting cattle rumen, Microbiology 40(2):335–341 (in Russian).

    PubMed  CAS  Google Scholar 

  • Vadeboncoeur, C., and Trahan, L., 1982, Glucose transport in Streptococcus salivarius. Evidence for the presence of a distinct phosphoenolpyruvate: glucose phosphotransferase system which catalyses the phosphorylation of α-methylglucoside, Can. J. Microbiol. 28(2):190–199.

    PubMed  CAS  Google Scholar 

  • Vasilyeva, L. V., 1970, A starshaped soil microorganism, Proc. USSR Acad. Sci. Biol. Ser. 2:308–309 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., 1972a, The peculiarities of the ultrastructure and the cycle of development of the bacterium Stella humosa, Proc. USSR Acad. Sci. Biol. Ser. 5:782–785 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., 1972b, On the cycle of development and cytological properties of a new soil microorganism possessing prosthecae, Proc. USSR Acad. Sci. Biol. Ser. 6:860–864 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., 1975, The soil Prosthecobacteria, Thesis, Inst. Microbiol., Acad. Sci. USSR, Moscow (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., 1980, Morphological grouping of Prosthecobacteria, Proc. USSR Acad. Sci. Biol. Ser. 5:719–737 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., 1984, Oligotrophs as components of biocenosis, in: Soil Organisms as Components of Biogeocenosis, Nauka, pp. 232–241 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., and Semenov, A. M., 1984, Labrys monachus, a genus of budding and prosthecate bacteria with radial cell symmetry, Microbiology 53(1):85–92 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., and Semenov, A. M., 1986, Prosthecobacteria of the genus Stella and description of a new species, Stella vacuolata, Proc. USSR Acad. Sci. Biol. Ser. 4:534–540 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., Lafitskaya, T. N., Aleksandrushkina, N. J., and Krasilnikova, E. N., 1974, Physiologo-biochemical peculiarities of Prosthecobacteria Stella humosa and Prosthecomicrobium sp., Proc. USSR Acad. Sci. Biol. Ser. 5:699–714 (in Russian).

    Google Scholar 

  • Vasilyeva, L. V., Semenov, A. M., and Giniyatullina, A. J., 1991, A new species of soil bacteria of Prosthecomicrobium genus, Microbiology 60(2):350–359 (in Russian).

    Google Scholar 

  • Ward, A. C., Rawley, B. I., and Dawes, E. A., 1977, Effect of oxygen and nitrogen limitation on poly-β-hydroxybutyrate biosynthesis in ammonium growth of Azotobacter beijerinckii, J. Gen. Microbiol. 102(1):61–68.

    CAS  Google Scholar 

  • Wetzel, R. G., 1975, Limnology, Saunders, Philadelphia, pp. 310–312.

    Google Scholar 

  • Whiteman, P. A., Iijima, T., Diesterhaft, M., and Freese, E., 1978, Evidence for a low affinity but high velocity aspartate transport system needed for rapid growth of Bacillus subtilis and aspartate as sole carbon source, J. Gen. Microbiol. 107(2):297–307.

    CAS  Google Scholar 

  • Whittenbury, R., and Dow, C. S., 1977, Morphogenesis and differentiation in Rhodomicrobium vanniellii and other budding and prosthecate bacteria, Bacteriol. Rev. 41(2):754–808.

    PubMed  CAS  Google Scholar 

  • Whittenbury, R., and McLee, A. G., 1967, Rhodopseudomonas palustris and Rhodopseudomonas viridis—Photosynthetic budding bacteria, Arch. Microbiol. 59(1–3):324–334.

    CAS  Google Scholar 

  • Zavarzin, G. A., 1970, The notion of microflora of dispersion in the carbon cycle, J. Gen. Biol. 31(4):386–393 (in Russian).

    Google Scholar 

  • Zavarzin, G. A., 1973, Incompatibility of characters in the systems of bacterial genera, J. Gen. Biol. 34(4):530–538 (in Russian).

    CAS  Google Scholar 

  • Zavarzin, G. A., 1984, Bacteria and composition of atmosphere, Nauka, Moscow (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Semenov, A., Staley, J.T. (1992). Ecology of Polyprosthecate Bacteria. In: Marshall, K.C. (eds) Advances in Microbial Ecology. Advances in Microbial Ecology, vol 12. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7609-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7609-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7611-8

  • Online ISBN: 978-1-4684-7609-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics