Skip to main content

Determination of Reaction Cross Sections from Counter-Telescope Data

  • Chapter
Programming and Computer Techniques in Experimental Physics

Part of the book series: The Lebedev Physics Institute Series ((LPIS,volume 45))

  • 53 Accesses

Abstract

Measurements on a given reaction provide the experimenter with data in the form of an individual number, or a set of numbers, which we shall refer to as the out put. The output is the number of counts recorded by counters, or the number of tracks in a chamber or on a photographic plate. The output is determined, on the one hand, by the reaction cross section, i.e., the probability of a particular process due to the interaction between an incident particle and a target nucleus or nucleon and, on the other, by the specific experimental conditions such as the size and efficiency of counters, the size of the target, the intensity of the incident particles, and so on. In order to deduce the cross section from the output one must first eliminate all the particular features of the experiment, i.e., introduce corrections for possible output losses due to secondary interactions of the reaction products with the target and the counters, taking into account the counter efficiency, and finally reduce the output to some standard conditions, for example, express it per unit solid angle, per target nucleus, and so on. In general, this is a relatively complicated problem. Thus, owing to ionization energy losses by the recorded charged particles, the effective volume of the target is not equal to its geometric volume, but is a complicated function of the experimental geometry and the incident-particle energy. A similar situation is encountered in the case of the solid angle within which the particles are recorded. The probability that a secondary particle will pass through different points in the detector is not a constant and, owing to the kinematic relation between the energy of the escaping particle and the angle of escape, it is a function of the incident-particle energy, the coordinates of the point of interaction in the target, and the energy discrimination in the counter telescope. The situation becomes exceedingly complicated when it is necessary to take into account multiple scattering of the incident particles during their passage through the target and counters. It is thus clear that an analytic approach to the solution of this problem is unlikely to be successful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. R. M. Sternheimer, Rev. Sci. Inst., 25: 1070 (1954).

    Article  ADS  Google Scholar 

  2. Atkinson and Willis, High Energy Particle Data, UCRL-2426 (1957).

    Google Scholar 

  3. R. M. Sternheimer, Phys. Rev., 118:1045 (1960); 103: 511 (1956).

    Google Scholar 

  4. B. Rossi, High-Energy Particles [Russian translation], Gostekhizdat, Moscow (1955).

    Google Scholar 

  5. G. Molier, Z. Naturforsch., 3a: 78 (1948).

    ADS  Google Scholar 

  6. G. Molier, Z. Naturforsch., 2a: 133 (1947).

    ADS  Google Scholar 

  7. H. A. Bethe, Phys. Rev., 89: 1256 (1953).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. E. J. Williams, Proc. Roy. Soc. (London), A169: 531 (1939).

    Article  ADS  CAS  Google Scholar 

  9. S. A. Goudsmit and J. L. Saunderson, Phys. Rev., 57:24 (1960); 58: 36 (1960).

    Google Scholar 

  10. H. Snyder and W. T. Scott, Phys. Rev., 76: 220 (1949).

    Article  ADS  CAS  Google Scholar 

  11. B. P. Nigam, M. K. Sundaresan, and T. Y. Wu, Phys. Rev., 115: 491 (1959).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. R. H. Dalitz, Proc. Roy. Soc. (London), A206: 509 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  13. R. Hofstadter, Rev. Mod. Phys., 28: 214 (1956).

    Article  ADS  CAS  Google Scholar 

  14. B. Rossi and K. Greizen, Interaction of Cosmic Rays with Matter [Russian translation], IL, Moscow (1948).

    Google Scholar 

  15. E. Jahnke and F. Emde, Tables of Functions [Russian translation], Gostekhizdat, Moscow (1949).

    Google Scholar 

  16. L. Eyges, Phys. Rev., 74: 1534 (1948).

    Article  ADS  CAS  Google Scholar 

  17. V. F. Grushin and E. M. Leikin, Pribory i Tekh. Eksp., No. 1, p. 52 (1965).

    Google Scholar 

  18. L. J. Schiff, Phys. Rev., 83: 252 (1951).

    Article  ADS  Google Scholar 

  19. A. S. Penfold and J. E. Leiss, Analysis of Photo Cross Sections, Preprint, University of Illinois (1958).

    Google Scholar 

  20. A. N. Gorbunov, Private Communication.

    Google Scholar 

  21. N. P. Buslenko et al., The Monte-Carlo Method [in Russian], Fizmatgiz, Moscow (1962).

    Google Scholar 

  22. N. P. Buslenko and Yu. A. Shreider, The Monte-Carlo Method [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  23. V. N. Demidovich and I. A. Maran, Fundamentals of Computational Mathematics [in Russian], Fizmatgiz, Moscow (1963).

    Google Scholar 

  24. I. V. Dunin-Barkovskii and N. V. Smirnov, Short Course of Mathematical Statistics for Technological Applications [in Russian], Fizmatgiz, Moscow (1959).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Consultants Bureau, New York

About this chapter

Cite this chapter

Slovokhotov, L.I. (1970). Determination of Reaction Cross Sections from Counter-Telescope Data. In: Skobel’tsyn, D.V. (eds) Programming and Computer Techniques in Experimental Physics. The Lebedev Physics Institute Series, vol 45. Springer, New York, NY. https://doi.org/10.1007/978-1-4684-7583-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7583-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-7585-2

  • Online ISBN: 978-1-4684-7583-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics